Publicación:
Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains

dc.contributor.authorRico, V.
dc.contributor.authorMora, J.
dc.contributor.authorGarcía Gallego, Paloma
dc.contributor.authorAgüero, A.
dc.contributor.authorBorrás, A.
dc.contributor.authorGonzález Elipe, A.R.
dc.contributor.authorLópez-Santos, C.
dc.contributor.funderUniversidad de Sevilla
dc.contributor.funderEuropean Comission (EC)
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2021-04-28T13:02:58Z
dc.date.available2021-04-28T13:02:58Z
dc.date.issued2020-12
dc.description.abstractInfusion of low surface tension liquids in nanostructured surfaces is currently used to promote an anti-icing response, although the long term stability of these systems is often jeopardized by losses of the infused liquid. In this work, we propose an alternative to the infusion procedure to induce a more effective and long lasting anti-icing capacity. The method consists of a combination of surface nanostructuration with the chemical grafting of fluorocarbon molecules. Al6061 substrates have been subjected to laser roughening and further modified with a nanostructured Al2O3 thin film to achieve a dual roughness and porous surface state. These surfaces have been subjected to a grafting treatment with perfluorooctyltriethoxysilane (PFOTES) vapor or, for comparative purposes, infused with a low surface tension liquid. A comparative analysis of the wetting, water condensation and anti-icing properties of these two systems showed an outstandingly better performance for the grafted surfaces with respect to the infused ones. Grafted surfaces were markedly superhydrophobic and required higher water vapor pressures to induce condensation. When looking for their anti-icing capacity, they presented quite long freezing delay times for supercooled water droplets (i.e. almost four hours) and exhibited a notably low ice accretion in a wind tunnel test. The high aging resistance and durability of these grafted surfaces and the reproducibility of the results obtained when subjected to successive ice accretion cycles show that molecular grafting is an efficient anti-icing methodology that, in aggressive media, may outperform the classical infusion procedures. The role of the fluorocarbon chains anchored on the surface in inducing an anti-icing functionality is discussed.es
dc.description.sponsorshipThis work has been carried out with the support of the EU project PHOBIC2ICE (ref 690819). The authors want to specially thank Airbus Group Innovations DE, Concordia Institute of Aerospace Design & Innovation of Concordia University and Department of Engineering Physics of Polytechnique Montreal for, respectively, the rain erosion, thermal cycling and sand erosion tests carried out within the frame of this project. The authors also thank the European Regional Development Funds program (EU-FEDER) and the MINECO-AEI (MAT2016-79866-R, PID2019-109603RA-I00, PID2019-110430GB-C21 and CSIC 201860E050) for financial support. CLS thanks the University of Seville through the VI “Plan Propio de Investigación y Transferencia de la US” (VI PPIT-US).es
dc.identifier.citationApplied Materials Today 21 : Article number 100815 (2020)es
dc.identifier.doi10.1016/j.apmt.2020.100815
dc.identifier.issn2352-9407
dc.identifier.otherhttps://www.sciencedirect.com/science/article/abs/pii/S2352940720302638
dc.identifier.urihttp://hdl.handle.net/20.500.12666/428
dc.language.isoenges
dc.publisherElsevieres
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-79866-R
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109603RA-I00
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110430GB-C21
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/690819
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.rights.license© 2020 Elsevier Ltd. All rights reserved.
dc.subjectIce Formationes
dc.subjectNepentheses
dc.subjectDeicinges
dc.subjectGraftinges
dc.subjectIce Accretiones
dc.subjectSLIPSes
dc.titleRobust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chainses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acceso-restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción: