Publicación: Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains
dc.contributor.author | Rico, V. | |
dc.contributor.author | Mora, J. | |
dc.contributor.author | García Gallego, Paloma | |
dc.contributor.author | Agüero, A. | |
dc.contributor.author | Borrás, A. | |
dc.contributor.author | González Elipe, A.R. | |
dc.contributor.author | López-Santos, C. | |
dc.contributor.funder | Universidad de Sevilla | |
dc.contributor.funder | European Comission (EC) | |
dc.contributor.other | Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737 | |
dc.date.accessioned | 2021-04-28T13:02:58Z | |
dc.date.available | 2021-04-28T13:02:58Z | |
dc.date.issued | 2020-12 | |
dc.description.abstract | Infusion of low surface tension liquids in nanostructured surfaces is currently used to promote an anti-icing response, although the long term stability of these systems is often jeopardized by losses of the infused liquid. In this work, we propose an alternative to the infusion procedure to induce a more effective and long lasting anti-icing capacity. The method consists of a combination of surface nanostructuration with the chemical grafting of fluorocarbon molecules. Al6061 substrates have been subjected to laser roughening and further modified with a nanostructured Al2O3 thin film to achieve a dual roughness and porous surface state. These surfaces have been subjected to a grafting treatment with perfluorooctyltriethoxysilane (PFOTES) vapor or, for comparative purposes, infused with a low surface tension liquid. A comparative analysis of the wetting, water condensation and anti-icing properties of these two systems showed an outstandingly better performance for the grafted surfaces with respect to the infused ones. Grafted surfaces were markedly superhydrophobic and required higher water vapor pressures to induce condensation. When looking for their anti-icing capacity, they presented quite long freezing delay times for supercooled water droplets (i.e. almost four hours) and exhibited a notably low ice accretion in a wind tunnel test. The high aging resistance and durability of these grafted surfaces and the reproducibility of the results obtained when subjected to successive ice accretion cycles show that molecular grafting is an efficient anti-icing methodology that, in aggressive media, may outperform the classical infusion procedures. The role of the fluorocarbon chains anchored on the surface in inducing an anti-icing functionality is discussed. | es |
dc.description.sponsorship | This work has been carried out with the support of the EU project PHOBIC2ICE (ref 690819). The authors want to specially thank Airbus Group Innovations DE, Concordia Institute of Aerospace Design & Innovation of Concordia University and Department of Engineering Physics of Polytechnique Montreal for, respectively, the rain erosion, thermal cycling and sand erosion tests carried out within the frame of this project. The authors also thank the European Regional Development Funds program (EU-FEDER) and the MINECO-AEI (MAT2016-79866-R, PID2019-109603RA-I00, PID2019-110430GB-C21 and CSIC 201860E050) for financial support. CLS thanks the University of Seville through the VI “Plan Propio de Investigación y Transferencia de la US” (VI PPIT-US). | es |
dc.identifier.citation | Applied Materials Today 21 : Article number 100815 (2020) | es |
dc.identifier.doi | 10.1016/j.apmt.2020.100815 | |
dc.identifier.issn | 2352-9407 | |
dc.identifier.other | https://www.sciencedirect.com/science/article/abs/pii/S2352940720302638 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12666/428 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-79866-R | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109603RA-I00 | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110430GB-C21 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690819 | |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | |
dc.rights.license | © 2020 Elsevier Ltd. All rights reserved. | |
dc.subject | Ice Formation | es |
dc.subject | Nepenthes | es |
dc.subject | Deicing | es |
dc.subject | Grafting | es |
dc.subject | Ice Accretion | es |
dc.subject | SLIPS | es |
dc.title | Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains | es |
dc.type | info:eu-repo/semantics/article | es |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication |