(Aeronáutica) Artículos

URI permanente para esta colecciónhttps://inta.metricsalad.com/handle/123456789/48

Buscar

Suscribirse para recibir un correo electrónico cada vez que se introduzca un ítem en esta colección.

Envíos recientes

Mostrando 1 - 20 de 43
  • PublicaciónRestringido
    Silicon Surface Nanostructuring for Covalent Immobilization of Biomolecules
    (ACS Publications, 2008-06-03) Rogero, Celia; Chaffey, Benjamin T.; Mateo Martí, Eva; Sobrado, J. M.; Horrocks, Benjamin R.; Houlton, Andrew; Lakey, Jeremy H.; Briones, C.; Martín Gago, J. A.; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN)
    We present a straightforward strategy to control the average distance of immobilized biomolecules on silicon surfaces. We exploit the reaction taking place between the amino residues within the biomolecules (lysine groups of proteins or the N-terminus of oligomers of peptide nucleic acid, PNA) and the aldehyde-terminated groups presented in a mixed aldehyde/alkyl organic monolayer on a silicon surface. The mixed monolayers were prepared by a thermal reaction of hydrogen-terminated Si(111) with a mixture of undecene and undecenyl-aldehyde. We quantitatively evaluate the surface concentration of aldehyde in the monolayer by atomic force microscopy and an intensity analysis of core level X-ray photoemission spectroscopy peaks. These complementary techniques show that the surface density of the reactive terminal groups reflects the mole fraction of aldehyde in the reactive solution used to modify the silicon surface. The further immobilization of proteins or peptide nucleic acids on the monolayer shows that the density of biomolecules reproduces the aldehyde surface density, which indicates a specific covalent attachment and a negligible nonspecific adsorption. The proposed procedure makes possible to control the average distance of the immobilized active biomolecules on the silicon surface, which could be of great relevance for applications in the interdisciplinary field of biosensors.
  • PublicaciónRestringido
    A chamber for studying planetary environments and its applications to astrobiology
    (IOP Science Publishing, 2006-07-13) Mateo Martí, Eva; Prieto Ballesteros, O.; Sobrado, J. M.; Gómez Elvira, J.; Martín Gago, J. A.; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid
    We have built a versatile environmental simulation chamber capable of reproducing atmospheric compositions and surface temperatures for most of the planetary objects. It has been especially developed to make feasible in situ irradiation and characterization of the sample under study. The total pressure in the chamber can range from 5 to 5 × 10−9 mbar. The required atmospheric composition is regulated via a residual gas analyser with ca ppm precision. Temperatures can be set from 4 K to 325 K. The sample under study can be irradiated with ion and electron sources, a deuterium ultraviolet (UV) lamp and a noble-gas discharge UV lamp. One of the main technological challenges of this device is to provide the user the possibility of performing ion and electron irradiation at a total pressure of 0.5 mbar. This is attained by means of an efficient differential pumping system. The in situ analysis techniques implemented are UV spectroscopy and infrared spectroscopy (IR). This machine is especially suitable for following the chemical changes induced in a particular sample by irradiation in a controlled environment. Therefore, it can be used in different disciplines such as planetary geology, astrobiology, environmental chemistry, materials science and for instrumentation testing.
  • PublicaciónRestringido
    Adhesives Based on Poly(glycidyl methacrylate-co-butyl acrylate) with Controlled Structure: Curing Behavior and Adhesion Properties on Metal Substrates
    (Wiley, 2023-10-26) Cañamero, Pedro; Fernández García, Marta; De la Fuente, J. L.; Ministerio de Ciencia e Innovación (MICINN); Instituto Nacional de Técnica Aeroespacial (INTA)
    The adhesion properties of poly(glycidyl methacrylate (GMA)-co-butyl acrylate (BA)) statistical copolymers, synthesized by atom transfer radical polymerization (ATRP), are investigated employing three different curing agents or hardeners, such as diethanolamine (DEA), dicyandiamide (DICY), and 2-cyanoacetamide (2-CA) on copper, iron, brass, aluminum, and titanium metal surfaces. This work describes the treatment of the different surfaces, establishes the optimal curing conditions from differential scanning calorimetry (DSC) analysis of these novel adhesive systems, and evaluates the results of the single-lap shear test for metal joints. Thus, by dynamic DSC measurements of the mixtures, a low curing temperature of 90 °C is defined when DEA is used as a curative; while systems based on DICY and 2-CA require temperatures of 150 °C and 160 °C, respectively. In addition, the curing process of this controlled acrylic copolymer with DICY exhibits a singular behavior, possibly due to the curing reaction mechanism, where multiple epoxy-amine ring-opening polyaddition reactions take place between DICY's active hydrogens and epoxy groups of poly(GMA-co-BA). This latter curing system shows the highest adhesion features with lap-shear strength at room temperature of 15.5 MPa, using copper as metallic substrate; however, the best results are obtained using 2-CA as curing agent with aluminum and iron.
  • PublicaciónRestringido
    Catalytic effects over formation of functional thermoplastic elastomers for rocket propellants
    (Wiley, 2021-11-22) Lucio, B.; De la Fuente, J. L.; Ministerio de Ciencia e Innovación (MICINN); Instituto Nacional de Técnica Aeroespacial (INTA); Gobierno Vasco
    Rheometry was the main method to characterize the curing process of binders made of functional polyurethanes (PUs). The macroglycols characterization by means of additional techniques such as nuclear magnetic resonance, size exclusion chromatography and differential scanning calorimetry, provided further information for the chemorheological description. Materials were based on Butacene ((ferrocenylbutyl)dimethylsilane grafted to hydroxyl-terminated polybutadiene (HTPB)), used in the solid propulsion field. First, the flow parameters for the uncured reactive mixtures of Butacene and four different diisocyanates were analysed via viscometry and these were markedly influenced by the chemical structure of the curing agents. Analysing the rheokinetic constant values of the pre-gel stage for Butacene- and HTPB-reactive systems, relevant catalysis caused by the ferrocene moiety was detected when aliphatic reactants were used, such as isophorone diisocyanate or 1,6-hexamethylene diisocyanate (IPDI and HMDI, respectively). No catalytic effect was found for 2,4-toluene diisocyanate (2,4-TDI) or even for 4,4’-methylenediphenyl diisocyanate (4,4’-MDI). Finally, the use of dynamic rheology was useful to evaluate the critical points during gelation process, where the reactivity of curing agents was associated with the achievement of elastic properties. Both techniques agreed the reactivity order of curing agents with Butacene, which is 4,4’-MDI > HMDI >> 2,4-TDI ≥ IPDI. The knowledge of the structure-reactivity relationship and, moreover, the kinetics of the urethane network formation for these metallo-PUs is paramount in manufacturing processes for advanced thermoplastic elastomer applications.
  • PublicaciónRestringido
    Rheological kinetics of ferrocenylsilane functionalized polyurethanes based on 4,4'-methylenediphenyl diisocyanate for advanced energetic materials
    (Wiley, 2021-10-18) Lucio, B.; De la Fuente, J. L.; Ministerio de Ciencia e Innovación (MICINN); Gobierno Vasco
    4,4’-Methylenediphenyl diisocyanate (4,4’-MDI) is a symmetric aromatic isocyanate commonly used as a curing agent in the production of polyurethanes (PUs). The chemorheology and kinetics of its reaction with a metallocenic-prepolymer derivative from hydroxyl-terminated polybutadiene (HTPB) is studied in bulk and under isothermal conditions at 50-80 °C by means of rheological measurements. The viscosity of the initial part of the PU formation, the pre-gel stage governed by viscous behaviour, is modelled through the Arrhenius rheokinetic model. This thermoplastic elastomer undergoes gelation, a transition that is analysed in depth together with predictions according to percolation theory. The gel point (tgel) is determined from the intersection in tan δ versus curing time for different shear frequencies. From the viscoelastic properties, like the elastic storage modulus (G´), the conversion degree is determined, and the entire polymerization process is modelled through the Kamal-Sourour and Sato kinetic expressions. Significant variation in the reaction orders and the activation energies might reveal a change in the process mechanism, depending on the temperature. This work demonstrates that an indirect method makes it possible to gain relevant knowledge about the chemistry of these thermoplastic PUs during curing, which is essential for their manufacturing. This study merits attention for the development of a new generation of high-performance binders with great potential in aerospace propulsion.
  • PublicaciónRestringido
    Kinetic and chemorheological modelling of the polymerization of 2,4- Toluenediisocyanate and ferrocene-functionalized hydroxyl-terminated polybutadiene
    (Elsevier, 2018-02-26) Lucio, B.; De la Fuente, J. L.; Ministerio de Economía y Competitividad (MINECO)
    The reaction of 2,4-toluenediisocyanate (2,4-TDI) and a metallocenic-prepolymer derived from hydroxyl-terminated polybutadiene (HTPB) was studied in bulk and under isothermal conditions (50–80 °C) by rheological methods. Two regions distinguished and limited by the gel point, identified as the crossover of loss tangent (tan δ) at different frequencies, were analysed from different rheological properties during the curing process of this novel metallo-polyurethane (PU). The initial part of this polymerization, dominated by the viscous behaviour (from η0 ≈ 5 Pa s to η = 250 Pa s), was modelled through the Arrhenius isothermal model, in which the presence of two rheokinetic stages, due to different isocyanate groups in the 2 and 4 positions for this asymmetric monomer, was found until the gelation is reached. The contributions of the main reactions for the region analysed, before the gel point of this polyaddition, are discussed. The gel transition was identified, and the viscoelastic behaviour of the gelation process was studied in depth. In addition, from the evolution of the storage modulus (G′) recorded, the overall polymerization reaction was described by a Kamal-Sourour kinetic expression for the reaction rate. The different kinetic parameters obtained for the autocatalytic model used yielded predictions that agree very well with the experimental data, finding a significant autocatalytic effect. An isoconversional method allowed the determination of the dependence of the activation energy on the conversion degree during the network formation of this advanced functional ferrocene-PU, which is of great interest in rocket technology research for the development of the aerospace industry.
  • PublicaciónRestringido
    Droplet breakup criterion in airfoils leading edge vicinity
    (Aerospace Research Central, 2018-05-07) García Magariño, A.; Velázquez, Ángel; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)
    A new breakup criterion is proposed in this paper for droplets subject to the flowfield generated by an incoming airfoil (that is, the criterion should be applied only to this type of aerodynamics flow). This criterion is based on the study of the characteristic times involved in the problem. These are the characteristic external flowfield variation time and the characteristic droplet deformation time. The criterion takes the shape of an empirical correlation that relates the Weber number at the onset of the breakup to the external flowfield and droplet characteristics. Experimental data on the droplet deformation and breakup tests conducted in a rotating arm facility are used to generate the data used to develop the correlation. Droplets, with diameters in the range of 0.3–3.6 mm, are allowed to fall in the path of an incoming airfoil attached to the end of a rotating arm. Airfoil velocities vary between 50 and 90 m∕s. The airfoil leading-edge radius varies from 0.030 to 0.103 m. Experiments are recorded with a high-speed camera using the shadowgraph illumination technique. The empirical breakup correlation applies to droplets that break in the bag and stamen mode. Some additional limited data on droplets that break in the bag and the shear mode are analyzed to see how they fit into the correlation.
  • PublicaciónRestringido
    Singularity and mesh divergence of inviscid adjoint solutions at solid walls
    (Elsevier, 2023-09-15) Lozano, Carlos; Ponsin, J.; Instituto Nacional de Técnica Aeroespacial (INTA)
    The mesh divergence problem occurring at subsonic and transonic speeds with the adjoint Euler equations is reviewed. By examining a recently derived analytic adjoint solution, it is shown that the explanation is that the adjoint solution is singular at the wall. The wall singularity is caused by the adjoint singularity at the trailing edge, but not in the way it was previously conjectured.
  • PublicaciónRestringido
    Explaining the lack of mesh convergence of inviscid adjoint solutions near solid walls for subcritical flows
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-04-24) Lozano, Carlos; Ponsin, J.; Instituto Nacional de Técnica Aeroespacial (INTA)
    Numerical solutions to the adjoint Euler equations have been found to diverge with mesh refinement near walls for a variety of flow conditions and geometry configurations. The issue is reviewed, and an explanation is provided by comparing a numerical incompressible adjoint solution with an analytic adjoint solution, showing that the anomaly observed in numerical computations is caused by a divergence of the analytic solution at the wall. The singularity causing this divergence is of the same type as the well-known singularity along the incoming stagnation streamline, and both originate at the adjoint singularity at the trailing edge. The argument is extended to cover the fully compressible case, in subcritical flow conditions, by presenting an analytic solution that follows the same structure as the incompressible one.
  • PublicaciónAcceso Abierto
    Shock equations and jump conditions for the 2D adjoint euler equations
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-03-10) Lozano, Carlos; Ponsin, J.; Instituto Nacional de Técnica Aeroespacial (INTA)
    This paper considers the formulation of the adjoint problem in two dimensions when there are shocks in the flow solution. For typical cost functions, the adjoint variables are continuous at shocks, wherein they have to obey an internal boundary condition, but their derivatives may be discontinuous. The derivation of the adjoint shock equations is reviewed and detailed predictions for the behavior of the gradients of the adjoint variables at shocks are obtained as jump conditions for the normal adjoint gradients in terms of the tangent gradients. Several numerical computations on a very fine mesh are used to illustrate the behavior of numerical adjoint solutions at shocks.
  • PublicaciónRestringido
    Analytic adjoint solutions for the 2-D incompressible Euler equations using the Green's function approach
    (Cambridge University Press, 2022-06-13) Lozano, Carlos; Ponsin, J.; Instituto Nacional de Técnica Aeroespacial (INTA)
    The Green's function approach of Giles and Pierce (J. Fluid Mech., vol. 426, 2001, pp. 327–345) is used to build the lift and drag based analytic adjoint solutions for the two-dimensional incompressible Euler equations around irrotational base flows. The drag-based adjoint solution turns out to have a very simple closed form in terms of the flow variables and is smooth throughout the flow domain, while the lift-based solution is singular at rear stagnation points and sharp trailing edges owing to the Kutta condition. This singularity is propagated to the whole dividing streamline (which includes the incoming stagnation streamline and the wall) upstream of the rear singularity (trailing edge or rear stagnation point) by the sensitivity of the Kutta condition to changes in the stagnation pressure.
  • PublicaciónRestringido
    Exact inviscid drag-adjoint solution for subcritical flows
    (Aerospace Research Central, 2021-09-25) Lozano, Carlos; Ponsin, J.; Instituto Nacional de Técnica Aeroespacial (INTA)
  • PublicaciónRestringido
    Watch your adjoints! Lack of mesh convergence in inviscid adjoint solutions
    (Aerospace Research Central, 2019-08-05) Lozano, Carlos; Instituto Nacional de Técnica Aeroespacial (INTA)
    It has been long known that 2D and 3D inviscid adjoint solutions are generically singular at sharp trailing edges. In this paper, a concurrent effect is described by which wall boundary values of 2D and 3D inviscid continuous and discrete adjoint solutions based on lift and drag are strongly mesh dependent and do not converge as the mesh is refined. Various numerical tests are performed to characterize the problem. Lift-based adjoint solutions are found to be affected for any flow condition, whereas drag-based adjoint solutions are affected for transonic lifting flows. A (laminar) viscous case is examined as well, but no comparable behavior is found, which suggests that the issue is exclusive to inviscid flows. It is argued that this behavior is caused by the trailing edge adjoint singularity.
  • PublicaciónRestringido
    Entropy and adjoint methods
    (Springer Link, 2019-11-11) Lozano, Carlos; Instituto Nacional de Técnica Aeroespacial (INTA)
    Aerodynamic drag can be partially approximated by the entropy flux across fluid domain boundaries with a formula due to Oswatitsch. In this paper, we build the adjoint solution that corresponds to this representation of the drag and investigate its relation to the entropy variables, which are linked to the integrated residual of the entropy transport equation. For inviscid isentropic flows, the resulting adjoint variables are identical to the entropy variables, an observation originally due to Fidkowski and Roe, while for non-isentropic flows there is a significant difference that is explicitly demonstrated with analytic solutions in the shocked quasi-1D case. Both approaches are also investigated for viscous and inviscid flows in two and three dimensions, where the adjoint equations and boundary conditions are derived. The application of both approaches to mesh adaptation is investigated, with especial emphasis on inviscid flows with shocks.
  • PublicaciónRestringido
    Entropy production by implicit Runge–Kutta schemes
    (Springer Link, 2019-01-23) Lozano, Carlos; Instituto Nacional de Técnica Aeroespacial (INTA)
    This paper follows up on the author’s recent paper “Entropy Production by Explicit Runge–Kutta schemes” (Lozano in J Sci Comput 76(1):521–564, 2018. https://doi.org/10.1007/s10915-017-0627-0), where a formula for the production of entropy by fully discrete schemes with explicit Runge–Kutta time integrators was presented. In this paper, the focus is on implicit Runge–Kutta schemes, for which the fully discrete numerical entropy evolution scheme is derived and tested.
  • PublicaciónRestringido
    A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements
    (Elsevier, 2023-05-23) Matías García, J. C.; Bardera, Rafael; Franchini, Sebastián; Barroso, Estela; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.
  • PublicaciónRestringido
    Characterization of an electrostatic filter prototype for bioaerosol flowmetering for INTA Investigation Aerial Platforms
    (Elsevier, 2019-08-20) Bardera, Rafael; García Magariño, A.; González, Elena; Aguilera, Á.; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    The characterization of the airborne microorganisms at different altitudes of the atmosphere is usually conducted by means of aerial platforms. It is very interesting to know the biological processes in the atmosphere. However, there are problems associated to the fact that sampling systems are embarked on an aircraft and the low presence of microorganisms at high altitude. A prototype of a new electrostatic filter for bioaersol flowmetering dedicated to biology investigations has been developed. This prototype was designed to be installed on board in aerial platforms of INTA. The experimental characterization of the aerodynamic flow was performed in order to investigate the behaviour of the filter when different air intake widths and different mechanical deflectors are employed. A combination of these impactor with the filters based on industrial electrostatic precipitator technology have been studied. Non-intrusive Particle Image Velocimetry technique has been used to measure the flow field inside the filter when it was running under controlled conditions in laboratory. This study is a first investigation on the flow field of filter for bioaerosol flowmetering to be embarked on an aircraft. The results show the influence of each parameter in the flow field that could be used for further investigations and designs.
  • PublicaciónAcceso Abierto
    Development and characterization of a low-cost wind tunnel balance for aerodynamic drag measurements
    (IOP Science Publishing, 2019-06-17) Bardera, Rafael; García Magariño, A.; Matías García, J. C.; Donoso, Eduardo; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    Drag force measurement is one of the most important data that can be obtained in wind tunnel tests. Drag force is directly related to the energy that a vehicle needs to move, and, therefore, to the fuel costs associated with it. For vehicles, drag forces are usually measured in wind tunnels. The typical instruments for drag measurement are the force balances, which are usually complex and expensive instruments. The aim of this investigation is to study the development of a low-cost in-house balance for drag measurements in a wind tunnel. Based on a commercial available load cell XFTC300 Series in combination with simple elements designed and manufactured at INTA, a balance capable of measuring the drag force to models in a considerably wide adjustable range has been developed and characterized. The balance has been calibrated and used in a wind tunnel. Tests were carried out on a truck model, a simplified frigate shape and an Ahmed Body to obtain the resistance coefficient and evaluate the operation of the balance.
  • PublicaciónRestringido
    Droplet ratio deformation model in combination with droplet breakup onset modeling
    (Aerospace Research Central, 2020-08-25) García Magariño, A.; Velázquez, Ángel; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)
    Droplet deformation and breakup in the continuously accelerated flowfield generated by an incoming airfoil have been studied. The upper limit of droplet deformation and the minimum distance to the airfoil model at which the breakup onset takes place have been modeled. Three analytical equations have been developed based on the combination of two models: a droplet deformation and trajectory model for droplets in a continuously accelerated flowfield, and a breakup model for droplets in the vicinity of a leading edge of an airfoil model. The verification was made using experimental data obtained for water droplets whose diameters were in the range from 400 to 1800  μm impinging on airfoils of three different chord sizes moving at velocities from 50 to 90  m/s90  m/s. The rotating arm facility at National Institute of Aerospace Technology was used for this purpose. The analytical equations of the model were in good agreement with the experimental data. The upper limit of droplet deformation was verified by 95.40% of the tested experimental cases, and the minimum distance to the airfoil was verified in 99.65% of the cases.
  • PublicaciónAcceso Abierto
    Selection criteria for biplane wing geometries by means of 2D wind tunnel tests
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022-05-16) Rodríguez Sevillano, A.; Barcala Montejano, M. Á.; Bardera, Rafael; García Magariño, A.; Rodríguez Rojo, María Elena; Morales Serrano, Sara; Fernández Antón, Jaime; Instituto Nacional de Técnica Aeroespacial (INTA)
    This paper presents a study based on wind tunnel research on biplane configurations. The objective of this research is to establish an experimental basis for relationships between the main geometrical parameters that define a biplane configuration (stagger, decalage, gap, and sweep angle) and the aerodynamic characteristics (CL, CD). This experimental study focuses on a 2D approach. This method is the first step towards dealing with the issue, and it allows the variables involved in the tests to be reduced. The biplane configuration has been compared with the monoplane configuration to analyze the viability for implementing the biplane configuration in the field of application for micro air vehicles (MAV). At present, the biplane and other unusual configurations have not been a common design for MAV; however, they do have unlimited future potential. A set of experimental tests were carried out on various biplane configurations at low Reynolds numbers, which allowed the criteria for selecting the best wing configuration to be defined. The results obtained here show that the biplane configuration provides a higher maximum lift coefficient (CLmax) than the planar wing (monoplane). Furthermore, it has a larger wetted surface than the planar configuration, so the parasitic drag increases for the biplane configuration. This research is focused on a drone flight regime (low Reynolds number), and in this case, the parasitic drag (profile drag) has an important role in the total drag of the airplane. This study considers whether the reduction in the induced drag due to three–dimensional configuration (biplanes, box–wings, and joined–wings) can reduce the total drag or if the increase in the parasitic drag is bigger. Additionally, the increase in lift and the decrease in parasitic drag (profile drag) will be studied to determine if they have a greater influence on the performance of the airplane than the increase in structural weight. Further research is planned to be performed on 3D prototypes, with the selected configurations, and applied to nonconventional wing planforms.