Persona:
Sor, Suthyvann

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Sor

Nombre de pila

Suthyvann

Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 16
  • PublicaciónRestringido
    Characterization of an electrostatic filter prototype for bioaerosol flowmetering for INTA Investigation Aerial Platforms
    (Elsevier, 2019-08-20) Bardera, Rafael; García Magariño, A.; González, Elena; Aguilera, Á.; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    The characterization of the airborne microorganisms at different altitudes of the atmosphere is usually conducted by means of aerial platforms. It is very interesting to know the biological processes in the atmosphere. However, there are problems associated to the fact that sampling systems are embarked on an aircraft and the low presence of microorganisms at high altitude. A prototype of a new electrostatic filter for bioaersol flowmetering dedicated to biology investigations has been developed. This prototype was designed to be installed on board in aerial platforms of INTA. The experimental characterization of the aerodynamic flow was performed in order to investigate the behaviour of the filter when different air intake widths and different mechanical deflectors are employed. A combination of these impactor with the filters based on industrial electrostatic precipitator technology have been studied. Non-intrusive Particle Image Velocimetry technique has been used to measure the flow field inside the filter when it was running under controlled conditions in laboratory. This study is a first investigation on the flow field of filter for bioaerosol flowmetering to be embarked on an aircraft. The results show the influence of each parameter in the flow field that could be used for further investigations and designs.
  • PublicaciónRestringido
    Breakup criterion for droplets exposed to the unsteady flow generated by an incoming aerodynamic surface
    (Elsevier, 2020-03-15) López Gavilan, Pablo; Velázquez, Ángel; García Magariño, A.; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)
    An experimental and theoretical study is presented on the problem of droplet breakup exposed to a continuously accelerating flow generated by an incoming aerodynamics surface. Droplet breakup experiments were carried out in a rotating arm facility. Droplet diameters were of the order of 1 mm. The maximum velocity of the airfoils located at the end of the rotating arm was 90 m/s. Droplet deformation was computed using a phenomenological model developed previously by the authors. The dynamics of this deformation was coupled to an instability model based on the growth of Rayleigh-Taylor waves at the droplet surface. It was found that, within the experimental uncertainty, breakup occurs when the instability wavelength approaches the droplet hydraulic diameter assuming that it flattens and deforms as an oblate spheroid. This fact allowed for the generation of a theoretical closed-form droplet deformation and breakup model that predicts the onset of breakup with discrepancies of about ±10 % when compared to the experimental results. Finally, as an application case, this closed-form model is used to simulate an actual situation in which the objective is to investigate whether a series of droplets that are approached by an airfoil either impact on its surface, or break prior to collision, or break without colliding, or pass through undamaged.
  • PublicaciónAcceso Abierto
    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
    (Spring Nature Research Journals, 2020-04-22) González Toril, Elena; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Del Toro, Silvia Díaz; Bardera, Rafael; Puente Sánchez, Fernando; De Diego Castilla, Graciela; Aguilera, Á.; Osuna Esteban, Susana; Sor, Suthyvann; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); 0000-0002-5750-0765; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
  • PublicaciónAcceso Abierto
    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
    (Springer Nature Research Journals, 2020-04-22) González Toril, Elena; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Díaz del Toro, Silvia; Bardera, Rafael; Sánchez, F. P.; De Diego Castilla, Graciela; Aguilera, Á.; Osuna Esteban, Susana; Sor, Suthyvann; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Sor, S. https://orcid.org/0000-0002-6972-8601
    We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
  • PublicaciónAcceso Abierto
    New droplet aero-breakup mechanism associated to unsteady flow loading
    (Elsevier, 2021-02-20) García Magariño, A.; Velázquez, Ángel; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)
    Experimental testing on the unsteady aero-breakup of ethyl alcohol droplets was carried out at the rotating arm facility of INTA. The selection of the working fluid was driven by the need to explore wider ranges of the dimensionless parameters that govern the problem. A model airfoil was attached at the end of a 2.3 m long rotating arm driven by an electric motor. Droplets, whose diameter ranged from 500 mm to 1500 mm, were allow to fall in the path of the airfoil that attained velocities in the range between 30 m/s and 60 m/s. Droplets trajectories and breakup modes were recorded, and a new breakup mode was identified. Its sequence is as follows: 1) the droplet deforms as an oblate spheroid, 2) a bulge appears and grows on its flow facing surface, 3) the droplet thickens in the stream-wise direction; 4) the thickening in the rear part of the droplet develops in the shape of a cone, 5) the cone grows thinner until a finger like shape is formed. Additionally, based on a theoretical model developed by the authors, a comparison has been made between the deformation and breakup onset phases of ethyl-alcohol and water droplets up to the instant of breakup.
  • PublicaciónRestringido
    Experimental and numerical characterization of the Flow around the Mars 2020 Rover
    (Aerospace Research Central, 2018-04-30) Bardera, Rafael; García Magariño, A.; Gómez Elvira, J.; Marín Jiménez, M.; Navarro, Sara; Torres Redondo, J.; Carretero, Sara; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    The investigation of the environmental factors in Mars atmosphere is one of the issues of the NASA’s Mars Exploration Program about the potential for life on Mars. The future Mars 2020 rover will transport the Mars Environmental Dynamics Analyzer dedicated to obtain meteorological data, as well as other objectives, about wind speed and direction. High-quality wind data are required to build mathematical models of the Mars climate; therefore, powerful techniques are necessary to eliminate flow perturbations produced by the rover presence. The aim of this Paper is the characterization of the flow around the Mars 2020 rover, providing a deep insight into the environmental interaction of the Mars wind with the rover. A comparative study between numerical simulations versus wind-tunnel experimental results is conducted trying to investigate the influence of the rover on the flow measured by the Mars Environmental Dynamics Analyzer wind sensors. This study is addressed to perform an assessment of the reliability of numerical methods in the prediction of this kind of flow in Martian conditions, evaluating its capability to be used in the future to correct wind data coming from the Mars 2020 rover mission. The advancements in the numerical methods as compared with experimental results implies an advancement on the calibration methods in the space wind sensor instrumentation carried in the Mars 2020 rover.
  • PublicaciónAcceso Abierto
    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
    (Springer Nature Research Journals, 2020-04-22) González Toril, Elena; Osuna, Toril; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Díaz del Toro, Silvia; Bardera, Rafael; Puente Sánchez, Fernando; De Diego Castilla, Graciela; Aguilera, Á.; Sor, Suthyvann; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
  • PublicaciónRestringido
    Mars 2020 Wind Velocity Measurement Interferences at High Reynolds Numbers
    (Aerospace Research Central, 2019-12-29) García Magariño, A.; Bardera, Rafael; Muñoz, Javier; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
    The Mars Environmental Dynamics Analyzer will be dedicated to getting meteorological data from Mars during NASA’s Mars 2020 rover mission. High-quality Mars atmosphere measurements are required in order to build mathematical models of the climate on a planetary scale. The Mars 2020 rover will be equipped with two wind sensors installed on two separated booms working in active redundancy but producing a mutual aerodynamic interference on one another’s wind measurements. This paper presents a systematic study on the interferences produced by the sensors and the rover body itself when measuring wind velocities in order to get insight to assess the uncertainties produced by this effect.
  • PublicaciónAcceso Abierto
    Interferometric laser imaging for droplet sizing method for long range measurements
    (Elsevier, 2021-01-15) García Magariño, A.; Sor, Suthyvann; Muñoz Campillejo, Javier; Bardera, Rafael; García Magariño, A.; Sor, Suthyvann; Muñoz-Campillejo, Javier; Instituto Nacional de Técnica Aeroespacial (INTA)
    A recent appendix in the aircraft regulations comprises testing supercooled large droplets impinging on its surfaces. For those tests, the size and distributions of droplets need to be characterized in icing wind tunnels. In this paper, the applicability of implementation of the “Interferometric Laser Imaging for Droplet Sizing” technique inside a wind tunnel with a 3 m × 2 m open elliptical test section has been discussed. Experiments have been conducted in the laboratory for the discussion at object distance of 1.6 m and 2.29 m and droplets diameters between 360 µm and 850 µm. All the streams were previously characterized by means of the shadowgraph imaging technique. A novel approach of the Interferometric Laser Imaging for Droplet Sizing technique where droplets are not fully defocused to avoid excessive overlapping is presented. Two new image processing approaches provide in general good results as compared to previous methods.
  • PublicaciónRestringido
    Droplet breakup criterion in airfoils leading edge vicinity
    (Aerospace Research Central, 2018-05-07) García Magariño, A.; Velázquez, Ángel; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)
    A new breakup criterion is proposed in this paper for droplets subject to the flowfield generated by an incoming airfoil (that is, the criterion should be applied only to this type of aerodynamics flow). This criterion is based on the study of the characteristic times involved in the problem. These are the characteristic external flowfield variation time and the characteristic droplet deformation time. The criterion takes the shape of an empirical correlation that relates the Weber number at the onset of the breakup to the external flowfield and droplet characteristics. Experimental data on the droplet deformation and breakup tests conducted in a rotating arm facility are used to generate the data used to develop the correlation. Droplets, with diameters in the range of 0.3–3.6 mm, are allowed to fall in the path of an incoming airfoil attached to the end of a rotating arm. Airfoil velocities vary between 50 and 90 m∕s. The airfoil leading-edge radius varies from 0.030 to 0.103 m. Experiments are recorded with a high-speed camera using the shadowgraph illumination technique. The empirical breakup correlation applies to droplets that break in the bag and stamen mode. Some additional limited data on droplets that break in the bag and the shear mode are analyzed to see how they fit into the correlation.