Persona:
González Hernández, Carmen

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

González Hernández

Nombre de pila

Carmen

Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 29
  • PublicaciónAcceso Abierto
    Two temperate earth-mass planets orbiting the nearby star GJ 1002
    (EDP Sciences, 2023-01-27) Suárez Mascareño, A.; González Álvarez, E.; Zapatero Osorio, M. R.; Lillo Box, J.; Faria, J. P.; Passegger, V. M.; Figueira, P.; Sozzetti, A.; Rebolo López, R.; Pepe, F.; Santos, N. C.; Cristiani, S.; Lovis, C.; Silva, André; Ribas, I.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Zechmeister, M.; Adibekyan, V.; Alibert, Y.; Béjar, V. J. S.; Benatti, S.; D´Odorico, V.; Damasso, M.; Delisle, J. B.; Di Marcantonio, P.; Dreizler, S.; Ehrenreich, D.; Hatzes, A. P.; Hara, N. C.; Henning, T.; Kaminski, A.; López González, M. J.; Martins, C. J. A. P.; Micela, G.; Montes, D.; Pallé, E.; Pedraz, S.; Rodríguez Martínez, Eloy; Rodríguez López, C.; Tal Or, L.; Sousa, S. G.; Udry, S.; González Hernández, Carmen; European Commission (EC); Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Consejo Superior de Investigaciones Científicas (CSIC); Fundacao para a Ciencia e a Tecnologia (FCT); Junta de Andalucía; Swiss National Science Foundation (SNSF); Cabildo de Gran Canaria
    We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ 1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5 V star GJ 1002 (relatively faint in the optical, V ~ 13.8 mag, but brighter in the infrared, J ~ 8.3 mag), located at 4.84 pc from the Sun. We analyse 139 spectroscopic observations taken between 2017 and 2021. We performed a joint analysis of the time series of the RV and full-width half maximum (FWHM) of the cross-correlation function (CCF) to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity. We detect the signal of two planets orbiting GJ 1002. GJ 1002 b is a planet with a minimum mass mp sin i of 1.08 ± 0.13 M⊕ with an orbital period of 10.3465 ± 0.0027 days at a distance of 0.0457 ± 0.0013 au from its parent star, receiving an estimated stellar flux of 0.67 F⊕. GJ 1002 c is a planet with a minimum mass mp sin i of 1.36 ± 0.17 M⊕ with an orbital period of 20.202 ± 0.013 days at a distance of 0.0738 ± 0.0021 au from its parent star, receiving an estimated stellar flux of 0.257 F⊕. We also detect the rotation signature of the star, with a period of 126 ± 15 days. We find that there is a correlation between the temperature of certain optical elements in the spectrographs and changes in the instrumental profile that can affect the scientific data, showing a seasonal behaviour that creates spurious signals at periods longer than ~200 days. GJ 1002 is one of the few known nearby systems with planets that could potentially host habitable environments. The closeness of the host star to the Sun makes the angular sizes of the orbits of both planets (~9.7 mas and ~15.7 mas, respectively) large enough for their atmosphere to be studied via high-contrast high-resolution spectroscopy with instruments such as the future spectrograph ANDES for the ELT or the LIFE mission.
  • PublicaciónAcceso Abierto
    The EChO science case
    (Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Schrader, J. R.; Scholz, A.; Watkins, C.; Maillard, J. P.; Abreu, M.; Glasse, A.; Testi, L.; Doel, P.; Magnes, W.; Licandro Goldaracena, J.; Wawer, P.; Zapatero Osorio, M. R.; Decin, L.; Sánz Forcada, J.; Vakili, F.; Aylward, A.; Swain, M.; Sozzetti, A.; Filacchione, G.; Delgado Mena, E.; Read, P.; Lognonné, P.; Irshad, R.; Coates, A.; Cecchi Pestellini, C.; Thrastarson, H.; Brown, L.; Guillot, T.; Strazzulla, G.; Barstow, J. K.; Budaj, J.; Morgante, G.; Pietrzak, R.; Leconte, J.; Hersant, F.; De Sio, A.; Grassi, D.; Selsis, F.; Jarchow, C.; Fouqué, P.; Del Vecchio, C.; Tennyson, J.; Cassan, A.; Fernández Hernández, Maite; Burleigh, M. R.; Cordier, D.; De Witt, J.; Pagano, I.; Ray, T.; Gambicorti, L.; Palla, F.; Maldonado, J.; Biondi, D.; Eiroa, C.; Winek, W.; Ade, P.; Villaver, E.; Temple, J.; Gear, W.; Thompson, S.; Dominic, C.; Galand, M.; Focardi, M.; Cockell, C.; Pace, E.; Dorfi, E.; Bryson, I.; Cavarroc, C.; Pilat Lohinger, E.; Smith, A.; Eymet, V.; MacTavish, C.; Morales, J. C.; Gómez, H.; Stamper, R.; Esposito, M.; Andersen, A.; Azzollini, R.; Maxted, P.; Allende Prieto, C.; Nelson, R.; Gillon, M.; Achilleos, N.; Buchhave, L. A.; Fabrizio, N.; Ciaravella, A.; Claudi, R.; Damasso, M.; Bordé, P.; Figueira, P.; Rickman, H.; Rees, J. M.; Sitek, P.; Fossey, S.; Bakos, G.; Pascale, E.; Laken, B.; Soret, L.; Femenía Castella, B.; Allard, F.; Amado, P. J.; Luzzi, D.; Colomé, J.; Galand, M.; Lammer, H.; Bonford, B.; López Valverde, M. A.; Kerins, E.; Yung, Y.; Espinoza Contreras, M.; Irwin, P.; Herrero, E.; Wright, G.; Guàrdia, J.; Banaszkiewicz, M.; Hoogeeven, R.; Alcala, J.; Guio, P.; Koskinen, T.; Barton, E. J.; Piskunov, N.; Maurin, A. S.; Leto, G.; Boisse, I.; Claret, A.; Massi, F.; Kervella, P.; Börne, P.; Heiter, U.; Hargrave, P.; Fletcher, L.; Sánchez Béjar, V. J.; Bézard, B.; Cabral, A.; Michaut, C.; Winter, B.; Sousa, S.; Giuranna, M.; Batista, V.; Frith, J.; Ballerini, P.; López Morales, M.; Monteiro, M.; Tingley, B. W.; Lanza, N.; Maggio, A.; Lundgaard Rasmussen, I.; Altieri, F.; Covino, E.; Coustenis, A.; Heredero, R. L.; Watson, D.; Coudé du Foresto, V.; Liu, S. J.; Sicardy, B.; Deeg, H. J.; Moses, J.; Rodler, F.; Lithgow Bertelloni, C.; Demangeon, O.; Adybekian, V.; Fletcher, L.; Swinyard, B.; Morales Calderón, M.; Fouqué, P.; Deroo, P.; Lo Cicero, Ugo; Hueso, R.; Iro, N.; González Merino, B.; López Puertas, M.; Capria, M. T.; Danielski, C.; Branduardi Raymont, G.; Luntzer, A.; Gaulme, P.; Bulgarelli, A.; Parmentier, V.; Gerard, J. C.; Alard, C.; Frith, J.; Dobrijévic, M.; Medvedev, A.; Barrado, D.; Jacquemoud, S.; Sethenadh, J.; Readorn, K.; Polichtchouk, I.; Petrov, R.; García Piquer, A.; Tabernero, H. M.; White, G.; Pancrazzi, M.; García López, Ramón; Filacchione, G.; Gómez Leal, I.; Rengel, M.; Gesa, L.; Tanga, P.; Mueller Wodarg, I.; Israelian, G.; Rebolo López, R.; Shore, S.; Peralta, J.; Collura, A.; Giro, E.; Del Val Borro, M.; Griffith, C.; Tecsa, M.; Haigh, J.; Moro Martín, A.; Jones, H.; Gizon, L.; Pezzuto, S.; Giani, E.; Mall, U.; Eales, S.; Graczyk, R.; Ramos Zapata, G.; Krupp, N.; Sánchez Lavega, A.; Fossey, S.; Alonso Floriano, F. J.; Justtanot, K.; Santos, N.; Pérez Hoyos, S.; Savini, G.; Chamberlain, S.; Bowles, N.; Kerschbaum, F.; Tozzi, A.; Turrini, D.; Kipping, D.; Maruquette, J. B.; Correira, A.; Trifoglio, M.; Agúndez, Marcelino; Scandaratio, G.; Snellen, I. A.; Scuderi, S.; Femenía Castella, B.; Prisinzano, L.; Oliva, E.; Hébrard, E.; Lodieu, N.; Forget, F.; Chadney, J.; Showman, A.; Gustin, J.; Vinatier, S.; Charnoz, S.; Affer, L.; Rank Lüftinger, T.; Poretti, E.; Lahav, O.; North, C.; Gerard, J. C.; Murgas Alcaino, F.; Yurchenko, S. N.; Widemann, T.; Ward Thompson, D.; Montañés Rodríguez, P.; Kovács, G.; Valdivieso, M. L.; Moya Bedon, A.; Montalto, M.; Christian Jessen, N.; Venot, O.; Koskinen, T.; Lagage, P. O.; Bellucci, G.; Prinja, R.; Pinfield, D.; Banaszkiewicz, M.; Waldmann, I.; Jones, G.; Morello, G.; Crook, J.; Lim, T.; Parviainen, H.; Pallé, E.; Ramos, A. A.; Sanromá, E.; Waters, R.; Morais, H.; Stiepen, A.; Lellouch, E.; Orton, G.; Rezac, L.; Beaulieu, J. P.; Focardi, M.; Mauskopf, P.; Barlow, M.; Guedel, M.; Waltham, D.; Agnor, C.; Encrenaz, T.; Cerulli, R.; Balado, A.; Bouy, H.; Rebordao, J.; Stolarski, M.; Álvarez Iglesias, C. A.; Adriani, A.; Rocchetto, M.; Norgaard Nielsen, H. U.; Hollis, M.; Selig, A.; Malaguti, G.; Burston, R.; Peña Ramírez, K. Y.; Schmider, F. X.; Baffa, C.; Heyrovsky, D.; Figueira, P.; Piccioni, G.; Ottensamer, R.; Radioti, A.; Yelle, R.; Pantin, E.; Miles Paez, P.; Belmonte Avilés, J. A.; Montes, D.; Varley, R.; Viti, S.; Abe, L.; Pinsard, F.; Tessenyi, M.; Di Giorgio, A.; Turrini, D.; Terenzi, L.; Hubert, B.; Griffin, M.; Barber, R. J.; Cole, R.; Gianotti, F.; Blecka, M.; Wawrzaszk, A.; Middleton, K.; De Kok, R.; Martín Torres, Javier; Kehoe, T.; Cho, J.; Machado, P.; Berry, D.; Wisniowski, T.; Grodent, D.; Rataj, M.; Hornstrup, A.; Kerschbaum, F.; Vandenbussche, B.; Stixrude, L.; González Hernández, Carmen; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Bulgarelli, A. [0000-0001-6347-0649]; Morales Calderon, M. [0000-0001-9526-9499]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; López Valverde, M. A. [0000-0002-7989-4267]; Gillon, M. [0000-0003-1462-7739]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pancrazzi, M. [0000-0002-3789-2482]; Pilat Lohinger, E. [0000-0002-5292-1923]; Altieri, F. [0000-0002-6338-8300]; Malaguti, G. [0000-0001-9872-3378]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Kovacs, G. [0000-0002-2365-2330]; Guillot, T. [0000-0002-7188-8428]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Olivia, E. [0000-0002-9123-0412]; Tizzi, A. [0000-0002-6725-3825]; Selsis, F. [0000-0001-9619-5356]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Gear, W. [0000-0001-6789-6196]; Damasso, M. [0000-0001-9984-4278]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Maldonado, J. [0000-0002-4282-1072]; Pace, E. [0000-0001-5870-1772]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Claret, A. [0000-0002-4045-8134]; Rodríguez, P. [0000-0002-6855-9682]; Bezard, B. [0000-0002-5433-5661]; Gómez, H. [0000-0003-3398-0052]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Hornstrup, A. [0000-0002-3363-0936]; Scholz, A. [0000-0001-8993-5053]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Danielski, C. [0000-0002-3729-2663]; Vandenbussche, B. [0000-0002-1368-3109]; Sousa, S. [0000-0001-9047-2965]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Bakos, G. [0000-0001-7204-6727]; Ade, P. [0000-0002-5127-0401]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Haigh, J. [0000-0001-5504-4754]; Scandariato, G. [0000-0003-2029-0626]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Adibekyan, V. [0000-0002-0601-6199]; Pérez Hoyos, S. [0000-0001-9797-4917]; Poretti, E. [0000-0003-1200-0473]; Maggio, A. [0000-0001-5154-6108]; Kervella, P. [0000-0003-0626-1749]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Filacchione, G. [0000-0001-9567-0055]; Rickman, H. [0000-0002-9603-6619]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Fletcher, L. [0000-0001-5834-9588]; Rataj, M. [0000-0002-2978-9629]; Stixrude, L. [0000-0003-3778-2432]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Hueso, R. [0000-0003-0169-123X]; Yurchenko, S. [0000-0001-9286-9501]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Peralta, J. [0000-0002-6823-1695]; Budaj, J. [0000-0002-9125-7340]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Grassi, D. [0000-0003-1653-3066]; Piccioni, G. [0000-0002-7893-6808]; Barton, E. [0000-0001-5945-9244]; Abreu, M. [0000-0002-0716-9568]; Ribas, I. [0000-0002-6689-0312]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Bouy, H. [0000-0002-7084-487X[; Lognonne, P. [0000-0002-1014-920X]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Tanga, P. [0000-0002-2718-997X]; Delgado, M. E. [0000-0003-4434-2195]; Leto, G. [0000-0002-0040-5011]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Balado, A. [0000-0003-4268-2516]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Barrado Navascues, D. [0000-0002-5971-9242]; Figueira, P. [0000-0001-8504-283X]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; Cabral, A. [0000-0002-9433-871X]; Watson, D. [0000-0002-4465-8264]; Turrini, D. [0000-0002-1923-7740]
    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.
  • PublicaciónAcceso Abierto
    Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Jiménez, J. J.; Boland, J.; Lemmon, M. T.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Toledo, D.; Álvarez Rios, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, J.; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, M.; Manzano, P.; Martín, J. A.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Córdoba, E.; Leiter, R.; Thompson, A.; Madsen, S.; Smith, M. D.; Viúdez Moreiras, Daniel; Saix López, A.; Sánchez Lavega, A.; Apéstigue, Víctor; Gómez Martín, L.; Gonzalo Melchor, Alejandro; Martínez, G. M.; de Mingo Martín, José Ramón; Gómez Elvira, J.; Martín-Ortega, Alberto; Arruego, I.; del Hoyo Gordillo, Juan Carlos; Martín-Ortega, Alberto; González Hernández, Carmen; Martín-Ortega, Alberto; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)
    The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
  • PublicaciónAcceso Abierto
    The atmosphere of HD 209458b seen with ESPRESSO No detectable planetary absorptions at high resolution
    (EDP Sciences, 2021-03-02) Casasayas Barris, N.; Pallé, E.; Strangret, M.; Bourrier, V.; Tabernero, H. M.; Yan, F.; Borsa, F.; Allart, R.; Zapatero Osorio, M. R.; Lovis, C.; Sousa, S. G.; Chen, G.; Oshagh, M.; Santos, N. C.; Pepe, F.; Rebolo, R.; Molaro, P.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Bouchy, F.; Demangeon, O. D. S.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Génova Santos, R.; Lavie, B.; Lillo Box, J.; Lo Curto, G.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Nunes, N. J.; Poretti, E.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; National Natural Science Foundation of China (NSFC); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); Yan, F. [0000-0001-9585-9034]; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, Na I, Mg I, Fe I, Fe II, Ca I, V I, Hα, and K I. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported Na I, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum (~1700 at 590 nm) allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models.
  • PublicaciónAcceso Abierto
    The Gaia -ESO Survey: Calibrating the lithium-age relation with open clusters and associations: I. Cluster age range and initial membership selections
    (EDP Sciences, 2020-11-05) Gutiérrez Albarrán, M. L.; Montes, D.; Gómez Garrido, M.; Tabernero, H. M.; Marfil, E.; Frasca, A.; Lanzafame, A. C.; Klutsch, A.; Franciosini, E.; Randich, S.; Smiljanic, R.; Korn, A. J.; Gilmore, G.; Alfaro, E. J.; Baratella, M.; Bayo, A.; Bensby, T.; Bonito, R.; Carraro, G.; Delgado Mena, E.; Feltzing, S.; Gonneau, A.; Heiter, U.; Hourihane, A.; Jiménez Esteban, F. M.; Jofre, P.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Roccatagliata, V.; Sousa, S.; Van der Swaelmen, M.; Worley, Charlotte C.; Zaggia, S.; González Hernández, Carmen; Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Agencia Estatal de Investigación (AEI); Fundação para a Ciência e a Tecnologia (FCT); Leverhulme Trust; 0000-0002-7569-3513; 0000-0002-7779-238X; 0000-0002-8087-4298; 0000-0002-0264-7356; 0000-0001-8907-4775; 0000-0002-0474-0896; 0000-0001-7869-3888; 0000-0003-3969-0232; 0000-0003-2438-0899; 0000-0003-0942-7855; 0000-0003-3978-1409; 0000-0001-9297-7748; 0000-0002-0155-9434; 0000-0002-3148-9836
    Context. Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent but also shows a complex pattern with other parameters that is not yet understood. For pre- and main-sequence late-type stars, these parameters include metallicity, mixing mechanisms, convection structure, rotation, and magnetic activity. Aims. We perform a thorough membership analysis for a large number of stars observed within the Gaia-ESO survey (GES) in the field of 20 open clusters, ranging in age from young clusters and associations, to intermediate-age and old open clusters. Methods. Based on the parameters derived from the GES spectroscopic observations, we obtained lists of candidate members for each of the clusters in the sample by deriving radial velocity distributions and studying the position of the kinematic selections in the EW(Li)-versus-Teff plane to obtain lithium members. We used gravity indicators to discard field contaminants and studied [Fe/H] metallicity to further confirm the membership of the candidates. We also made use of studies using recent data from the Gaia DR1 and DR2 releases to assess our member selections. Results. We identified likely member candidates for the sample of 20 clusters observed in GES (iDR4) with UVES and GIRAFFE, and conducted a comparative study that allowed us to characterize the properties of these members as well as identify field contaminant stars, both lithium-rich giants and non-giant outliers. Conclusions. This work is the first step towards the calibration of the lithium-age relation and its dependence on other GES parameters. During this project we aim to use this relation to infer the ages of GES field stars, and identify their potential membership to young associations and stellar kinematic groups of different ages. © ESO 2020.
  • PublicaciónRestringido
    Nightside condensation of iron in an ultrahot giant exoplanet
    (Nature Research Journals, 2020-03-11) Ehrenreich, D.; Lovis, C.; Allart, R.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Borsa, F.; Demangeon, O. D. S.; Dumusque, X.; Casasayas Barris, N.; Séngrasan, D.; Sousa, S.; Abreu, M.; Adibekyan, V.; Affolter, M.; Allende Prieto, C.; Alibert, Y.; Aliverti, M.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Bolmont, É.; Bouchy, F.; Bourrier, V.; Broeg, C.; Cabral, A.; Calderone, G.; Pallé, E.; Cegla, H. M.; Cirami, R.; Coelho, João M. P.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Dekker, H.; Delabre, B.; Deiries, S.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Harada, N.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lendl, M.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M.; Monteiro, M. A.; Moschetti, M.; Muller, N.; Nunes, N.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia Milla, A.; Seidel, J. V.; Sosnowska, D.; Sozzetti, A.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Suárez Mascareño, A. [0000-0002-3814-5323]; Abreu, M. [0000-0002-0716-9568]; João M. P. Coelho. [0000-0002-4339-0550]; Monteiro, M. J. [0000-0003-0513-8116]; Tabernero, H. [0000-0002-8087-4298]; Nunes, N. J. [0000-0002-3837-6914]; Cabral, A. [0000-0002-9433-871X]; Molaro, P. [0000-0002-0571-4163]; Redaelli, E. M. A. [0000-0001-8185-2122]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Castro Alves, D. [0000-0001-7026-2514]; Seidel, J. V. [0000-0002-7990-9596]; Martins, C. J. A. P. [0000-0002-4886-9261]; Adibekyan, V. [0000-0002-0601-6199]; Zerbi, F. M. [0000-0002-9996-973X]; Monteiro, M. [0000-0001-5644-0898]; Mehner, A. [0000-0002-9564-3302]; Santos, N. [0000-0003-4422-2919]; Cegla, H. [0000-0001-8934-7315]; Sozzetti, A. [0000-0002-7504-365X]; Allart, R. [0000-0002-1199-9759]; Landoni, M. [0000-0001-5570-5081]; Coretti, I. [0000-0001-9374-3249]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Ultrahot giant exoplanets receive thousands of times Earth’s insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3,4,5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10,11,12,13,14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (‘evening’) and night-to-day (‘morning’) terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.
  • PublicaciónAcceso Abierto
    ESPRESSO high-resolution transmission spectroscopy of WASP-76 b
    (EDP Sciences, 2021-02-19) Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas Barris, N.; Demangeon, O. D. S.; Ehrenreich, D.; Lillo Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, N. C.; Pepe, F.; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D´Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Genova Santos, R.; Hojjatpanah, S.; Lo Curto, G.; Lavie, B.; Martins, C. J. A. P.; Martins, J. H. C.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Poretti, E.; Seidel, J. V.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Aliverti, M.; Affolter, M.; Alves, D.; Amate, M.; Ávila, G.; Bandy, T.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Conconi, P.; Coelho, J.; Cumani, C.; Deiries, S.; Dekker, H.; Delabre, B.; Fragoso, A.; Genoni, M.; Genolet, L.; Hughes, I.; Knudstrup, J.; Kerber, F.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Di Marcoantonio, P.; Mégevand, D.; Monteiro, M.; Moschetti, M.; Mueller, E.; Modigliani, A.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Iwert, O.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Istituto Nazionale di Astrofisica (INAF); Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. [0000-0003-0513-8116]; Coelho, F. M. [0000-0002-4339-0550]; Faria, J. [0000-0002-6728-244X]; Santos, N. [0000-0003-4422-2919]
    Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.
  • PublicaciónAcceso Abierto
    Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant
    (EDP Sciences, 2021-02-19) Schmidt, T. M.; Molaro, P.; Murphy, M. T.; Lovis, C.; Cupani, G.; Cristiani, S.; Pepe, F. A.; Rebolo, R.; Santos, N. C.; Abreu, M.; Adibekyan, V.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Baldini, V.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Coretti, I.; D´Odorico, V.; Di Marcoantonio, P.; Ehrenreich, D.; Figueira, P.; Genoni, M.; Génova Santos, R.; Kerber, F.; Londoni, M.; Leite, A. C. O.; Louis Lizon, J.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M.; Monteiro, M. J. P. F. G.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Redaelli, E.; Riva, M.; Santos, P.; Sosnowska, D.; Sousa, S. G.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Zapatero Osorio, M. R.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Australian Research Council (ARC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Schmidt, T. M. [0000-0002-4833-7273]; Molaro, P. [0000-0002-0571-4163]; Murphy, M. T. [0000-0002-7040-5498]; Cristiani, S. [0000-0002-2115-5234]; Pepe, F. A. [0000-0002-9815-773X]; Rebolo, R. [0000-0003-3767-7085]
    Observations of metal absorption systems in the spectra of distant quasars allow one to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph ESPRESSO, which was recently installed at the VLT. In preparation of the fundamental physics related part of the ESPRESSO GTO program, we present a thorough assessment of the ESPRESSO wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, which is based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Pérot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24 m s−1. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of ESPRESSO with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the 10−6 level can be obtained with ESPRESSO without being limited by wavelength calibration systematics.
  • PublicaciónAcceso Abierto
    The GAPS Programme at TNG XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b
    (EDP Sciences, 2020-05-29) Carleo, I.; Malavolta, L.; Lanza, A. F.; Damasso, M.; Desidera, S.; Borsa, F.; Mallonn, M.; Pinamonti, M.; Gratton, R.; Alei, E.; Benatti, S.; Mancini, L.; Maldonado, J.; Biazzo, K.; Esposito, M.; Frustagli, G.; González Álvarez, E.; Micela, G.; Scandariato, G.; Sozzatti, A.; Affer, L.; Bignamini, A.; Bonomo, A. S.; Claudi, R.; Cosentino, R.; Covino, E.; Fiorenzano, A. F. M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Maggio, A.; Molinari, E.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Poretti, E.; Rainer, M.; Redfield, S.; Baffa, C.; Baruffolo, A.; Buschschacher, N.; Billoti, V.; Cecconi, M.; Falcini, G.; Fantinel, D.; Fini, L.; Galli, A.; Ghedina, A.; Ghinassi, F.; Giani, E.; Guerra, J.; Hernández Díaz, M.; Hernández, N.; Luzzolino, M.; Lodi, M.; Oliva, E.; Origlia, L.; Pérez Ventura, H.; Puglisi, A.; Riverol, C.; Riverol, L.; San Juan, J.; Sanna, N.; Scuderi, S.; Seemann, U.; Sozzi, M.; Tozzi, P.; González Hernández, Carmen; Jimeno González, María; Agenzia Spaziale Italiana (ASI); European Commission (EC); Claudi, R. [0000-0001-7707-5105]; Leto, G. [0000-0002-0040-5011]; Piotto, G. [0000-0002-9937-6387]; Bonomo, A. S. [0000-0002-6177-198X]; Sozzetti, A. [0000-0002-7504-365X]; Biazzo, K. [0000-0002-1892-2180]; Ghedina, A. [0000-0003-4702-5152]; Damasso, M. [0000-0001-9984-4278]; Cosentino, R. [0000-0003-1784-1431]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.
  • PublicaciónAcceso Abierto
    Broadband transmission spectroscopy of HD 209458b with ESPRESSO: evidence for Na, TiO, or both
    (EDP Sciences, 2020-12-01) Santos, N. C.; Cristo, E.; Demangeon, O. D. S.; Oshagh, M.; Allart, R.; Barros, S. C. C.; Borsa, F.; Bourrier, V.; Casasayas Barris, N.; Ehrenreich, D.; Faria, J. P.; Figueira, P.; Martins, J. H. C.; Micela, G.; Pallé, E.; Sozzetti, A.; Tabernero, H.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Bouchy, F.; Cabral, A.; Dekker, H.; Di Marcoantonio, P.; D´Odorico, V.; Dumusque, X.; Lavie, B.; Lo Curto, G.; Lovis, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Poretti, E.; Rivas, M.; Sousa, S. G.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); European Research Council (ERC); Agencia Estatal de Investigación (AEI); 0000-0003-4422-2919; 0000-0001-5992-7589; 0000-0001-7918-0355; 0000-0002-0715-8789; 0000-0003-0987-1593
    Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field. Aims. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD 209458b, to probe the broadband transmission optical spectrum of the planet. Methods. We applied the chromatic Rossiter–McLaughin method to derive the transmission spectrum of HD 209458b. We compared the results with previous HST observations and with synthetic spectra. Results. We recover a transmission spectrum of HD 209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Conclusions. Using the chromatic Rossiter–McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets.