Application of Artificial Neural Networks to Complex Dielectric Constant Estimation from Free-Space Measurements

dc.contributor.authorJurado Lucena, A.es
dc.contributor.authorEscot Bocanegra, D.es
dc.contributor.authorPoyatos Martínez, D.es
dc.contributor.authorMontiel, I.es
dc.contributor.funderInstituto Nacional de Técnica Aeroespacial (INTA)es
dc.date.accessioned2022-09-23T09:13:18Z
dc.date.available2022-09-23T09:13:18Z
dc.date.issued2009-03-16
dc.description.abstractAdequate characterization of materials allows the engineer to select the best option for each application. Apart from mechanical or environmental characterization, last decades’ rise in the exploitation of the electromagnetic spectrum has made increasingly important to understand and explain the behavior of materials also in that ambit. The electromagnetic properties of non-magnetic materials are governed by their intrinsic permittivity or dielectric constant and free-space measurements is one of the various methods employed to estimate this quantity at microwave frequencies. This paper proposes the application of Artificial Neural Networks (ANNs) to extract the dielectric constant of materials from the reflection coefficient obtained by free-space measurements. In this context, two kind of ANNs are examined: Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks. Simulated materials are utilized to train the networks with and without noise and performance is tested using an actual material sample measured by the authors in an anechoic chamber.es
dc.description.peerreviewedPreprintes
dc.identifier.citationInternational Work Conference on the Interplay between Natural and Artificial Computation: 517-526es
dc.identifier.doi0.1007/978-3-642-02264-7_53
dc.identifier.isbn978-3-642-02263-0
dc.identifier.isbn978-3-642-02264-7
dc.identifier.otherhttps://link.springer.com/chapter/10.1007/978-3-642-02264-7_53es
dc.identifier.urihttp://hdl.handle.net/20.500.12666/787
dc.language.isoenges
dc.publisherSpringer Linkes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.license© 2009 Springer-Verlag Berlin Heidelberges
dc.subjectMaterial characterizationes
dc.subjectComplex permittivityes
dc.subjectFree space measurementses
dc.subjectMultiplayer perceptrones
dc.subjectRadial basis functiones
dc.titleApplication of Artificial Neural Networks to Complex Dielectric Constant Estimation from Free-Space Measurementses
dc.typeinfo:eu-repo/semantics/lecturees
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acceso-restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción: