Persona:
de Mingo Martín, José Ramón

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

de Mingo Martín

Nombre de pila

José Ramón

Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • PublicaciónRestringido
    Early SEU sensitivity assessment for collaborative hardening techniques: A case study of OPTOS processing architecture
    (Elsevier, 2019-03-06) Portela García, M.; Rodríguez, Santiago; Rivas, J.; López Buedo, S.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA); Universidad Carlos III de Madrid (UC3M); Universidad Autónoma de Madrid (UAM)
    Nowadays, space missions face a relentless increase in requirements for on-board computers. Higher computing capacities are needed, while the power consumption, mass and area must be reduced. Unfortunately, requirements evolve faster than the ability of manufacturers to develop better space-qualified processors, so techniques that allow designers to use COTS (commercial, off-the-shelf) components are needed. As such, collaborative hardening is a powerful an efficient technique to guarantee the reliability of the safety critical tasks of a satellite. However, the stringent dependability requirements of space missions call for comprehensive on-ground validation of any design using COTS components before it can be used in orbit. In this work, we present the collaborative hardening techniques developed for the OPTOS satellite, and how it was on-ground validated against the effects of radiation. We introduce a methodology for early SEU sensitivity assessment based on fault injection through an autonomous emulation system. Fault injection is performed at system level, not unit level, to validate the safety critical techniques implemented by the collaborative architecture. The experimental results show that, while single units are vulnerable to the effects of radiation, the reliability of the system as a whole is not compromised.
  • PublicaciónAcceso Abierto
    Data Analysis and Results of the Radiation-Tolerant Collaborative Computer On-Board OPTOS CubeSat
    (Hindawi, 2019-02-12) Rodríguez, Santiago; Ibarmia, S.; Rivas, J.; López Buedo, S.; López Ongil, C.; Portela García, M.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA); Universidad Carlos III de Madrid (UC3M); Universidad Autónoma de Madrid (UAM)
    The current evolution of the space missions demands to increase the computing capacities of the on-board computer while reducing its power consumption. This requirement evolves faster than the ability of the manufacturers to develop better space-qualified processors. To meet the strong requirements, the National Institute of Aerospace Technology has developed a distributed on-board computer based on commercial off-the-shelf (COTS). This computer, named OPTOS, provides enhanced computational capacities with respect to what computers of other small satellites typically provide. To maintain the reliability needed to perform typical critical activities such as real-time maintenance or current surveillance, authors have conceived a set of collaborative hardening techniques, taking advantage of the distributed architecture of the OPTOS On-Board Computer. The 3-year mission data analysis shows the feasibility of the collaborative hardening techniques implemented, despite using SEU sensitive devices. The authors describe the processes and tools used to analyse the data and clearly expose the functional errors found at unit level, while the system remains unfaulty and reliable thanks to the collaborative techniques.
  • PublicaciónAcceso Abierto
    OWLS: a ten-year history in optical wireless links for intra-satellite communications
    (Institute of Electrical and Electronics Engineers 27(9): 1599-1611(2009), 2009-12-10) Arruego, I.; Guerrero, H.; Rodríguez, Santiago; Martínez Oter, J.; Jiménez, J. J.; Domínguez, J. A.; Rivas, J.; Álvarez, M. T.; Gallego, P.; Azcue, J.; Ruiz de Galarreta, C.; Martín, B.; Álvarez Herrero, A.; Díaz Michelena, M.; Martín, I.; Tamayo, R.; Reina, M.; Gutiérrez, M. J.; Sabau, L.; Torres, J.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Apéstigue, Víctor; Sánchez - Valdepeñas García - Moreno, Jesús; Samblas Iglesias, Juan
    The application of Optical Wireless Links to intra- Spacecraft communications (OWLS) is presented here. This work summarizes ten years of developments, ranging from basic optoelectronic parts and front-end electronics, to different inorbit demonstrations. Several wireless applications were carried out in representative environments at ground level, and on in-flight experiments. A completely wireless satellite will be launched at the beginning of 2010. The benefits of replacing standard data wires and connectors with wireless systems are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases (AIT). However, the Aerospace and Defense fields need high reliability solutions. The use of COTS (Commercial-Off-The- Shelf) parts in these fields require extensive analyses in order to attain full product assurance. The current commercial optical wireless technology needs a deep transformation in order to be fully applicable in the aforementioned fields. Finally, major breakthroughs for the implementation of optical wireless links in Space will not be possible until dedicated circuits such as mixed analog/digital ASICs are developed. Once these products become available, it will also be possible to extend optical wireless links to other applications, such as Unmanned Air and Underwater Vehicles (UAV and UUV). The steps taken by INTA to introduce Optical Wireless Links in the Space environment are presented in this paper.
  • PublicaciónRestringido
    Techniques to verify the sampling system and flow characteristics of the sensor MicroMED for the ExoMars 2022 Mission
    (Elsevier, 2021-08-21) Cozzolino, F.; Franzese, G.; Mongelluzzo, G.; Molfese, C.; Esposito, F.; Cosimo Ruggeri, A.; Porto, C.; Silvestro, S.; Popa, C. I.; Mennella, V.; Scaccabarozzi, D.; Saggin, B.; Ortega Rico, A. M.; Arruego, I.; Santiuste, Nuria; Brienza, D.; Cortecchia, F.; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA); Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF)
    Suspended dust has a prominent role in Martian climatology. Several significant dust related phenomena can be observed at various scales, starting from global dust storms to local dust devils, which have important effects such as the increase of troposphere temperature, the modification of the wind regime and the localized motion of sand at the surface. These phenomena depend on dust grain characteristics such as the size distribution or the chemical and bulk composition. Currently, we do not have direct measurement of the dust properties; the only available information in this regard are derived from spectrometric measurements, optical depth, and albedo coming from instruments aboard satellites and in-situ. Herein, we describe the tests performed on the optical particle counter named MicroMED, designed and built to perform the first ever direct in-situ measurement of suspended dust grains in the Martian atmosphere close to the surface. MicroMED is a dust particle size analyzer which was selected to join the Dust Complex payload aboard the ESA/Roscosmos ExoMars 2022 mission. It has the capability to suck in dust that is suspended in atmosphere and to measure the sizes of single grain. The sensor sucks in the dust grains using a sampling system, guides the grains through ducts and concentrates them in an area illuminated by laser. Detecting the intensity of the light scattered by the grains during the crossing through the illuminated area, it is possible to determinate the size of grain. Here we present the innovative techniques in order to verify the performances in terms of dust suction efficiency of the MicroMED Flight Model, using a prototype called MM1.
  • PublicaciónAcceso Abierto
    Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Jiménez, J. J.; Boland, J.; Lemmon, M. T.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Toledo, D.; Álvarez Rios, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, J.; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, M.; Manzano, P.; Martín, J. A.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Córdoba, E.; Leiter, R.; Thompson, A.; Madsen, S.; Smith, M. D.; Viúdez Moreiras, Daniel; Saix López, A.; Sánchez Lavega, A.; Apéstigue, Víctor; Gómez Martín, L.; Gonzalo Melchor, Alejandro; Martínez, G. M.; de Mingo Martín, José Ramón; Gómez Elvira, J.; Martín-Ortega, Alberto; Arruego, I.; del Hoyo Gordillo, Juan Carlos; Martín-Ortega, Alberto; González Hernández, Carmen; Martín-Ortega, Alberto; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)
    The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
  • PublicaciónRestringido
    Sensitivity evaluation method for aerospace digital systems with collaborative hardening
    (Institute of Electrical and Electronics Engineers, 2011-06-15) Portela García, M.; García Valderas, M.; San Milán, E.; López Ongil, C.; Entrena, Luis; Rodríguez, Santiago; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA)
    Complexity of current digital systems and circuits involves new challenges in the field of hardening and measuring circuit's sensitivity under SEEs. In this work, a new solution for evaluating the SEU sensitivity of space systems based on using programmable logic devices is proposed. This solution is able to perform a deep analysis of fault effects in systems with hardware functionality distribution, taking into account the high complexity of the hardware nodes (complex programmable logic devices) and their collaborative hardening properties.