Persona:
Sánchez - Valdepeñas García - Moreno, Jesús

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Sánchez - Valdepeñas García - Moreno

Nombre de pila

Jesús

Nombre

Resultados de la búsqueda

Mostrando 1 - 3 de 3
  • PublicaciónAcceso Abierto
    Field aberrations in terms of the Q-polynomial basis and its relationship to the Zernike basis
    (Optica Publishing Group, 2021-02-01) Restrepo, R.; Belenguer Dávila, T.; González Fernández, M.; Sánchez - Valdepeñas García - Moreno, Jesús; Instituto Nacional de Técnica Aeroespacial (INTA)
    The aberrations generated at the image plane of an optical system that includes freeform surfaces described through Q-polynomials can be calculated using nodal aberration theory. By analyzing the definition of each Q-polynomial, they can be compared with Zernike polynomials allowing a relationship between the two bases. This relationship is neither simple nor direct, so a fitting must be made. Once established, the contribution to the aberration field map generated by each surface described through the Q-polynomial can be calculated for any surface that is not at the stop of the system. The Q-polynomials are characterized by their orthogonality in the gradient instead of the surface, which represents an opportunity to restrict the changes in the slope in a simple way and facilitate the manufacturing process. The knowledge of the field aberrations generated by each Q-polynomial allows selecting that which of them are necessary to be introduced as variables in the optimization process for an efficient optimization.
  • PublicaciónAcceso Abierto
    OWLS: a ten-year history in optical wireless links for intra-satellite communications
    (Institute of Electrical and Electronics Engineers 27(9): 1599-1611(2009), 2009-12-10) Arruego, I.; Guerrero, H.; Rodríguez, Santiago; Martínez Oter, J.; Jiménez, J. J.; Domínguez, J. A.; Rivas, J.; Álvarez, M. T.; Gallego, P.; Azcue, J.; Ruiz de Galarreta, C.; Martín, B.; Álvarez Herrero, A.; Díaz Michelena, M.; Martín, I.; Tamayo, R.; Reina, M.; Gutiérrez, M. J.; Sabau, L.; Torres, J.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Apéstigue, Víctor; Sánchez - Valdepeñas García - Moreno, Jesús; Samblas Iglesias, Juan
    The application of Optical Wireless Links to intra- Spacecraft communications (OWLS) is presented here. This work summarizes ten years of developments, ranging from basic optoelectronic parts and front-end electronics, to different inorbit demonstrations. Several wireless applications were carried out in representative environments at ground level, and on in-flight experiments. A completely wireless satellite will be launched at the beginning of 2010. The benefits of replacing standard data wires and connectors with wireless systems are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases (AIT). However, the Aerospace and Defense fields need high reliability solutions. The use of COTS (Commercial-Off-The- Shelf) parts in these fields require extensive analyses in order to attain full product assurance. The current commercial optical wireless technology needs a deep transformation in order to be fully applicable in the aforementioned fields. Finally, major breakthroughs for the implementation of optical wireless links in Space will not be possible until dedicated circuits such as mixed analog/digital ASICs are developed. Once these products become available, it will also be possible to extend optical wireless links to other applications, such as Unmanned Air and Underwater Vehicles (UAV and UUV). The steps taken by INTA to introduce Optical Wireless Links in the Space environment are presented in this paper.
  • PublicaciónRestringido
    Particle-bound PAH emissions from a waste glycerine-derived fuel blend in a typical automotive diesel engine
    (Elsevier, 2020-10) Ballesteros, R.; Ramos, A.; Sánchez - Valdepeñas García - Moreno, Jesús; Sánchez Valdepeñas, J. [0000-0002-9594-8894]
    Polynuclear or polycyclic aromatic hydrocarbons (PAH) are known to be one of the most dangerous types of compounds of their class due to their carcinogenic potential. Some atmospheric PAH are measured and regulated to quantify the air quality. However, in order to better understand the presence of these compounds in the atmosphere it is crucial to study the PAH emissions sources. In this work, we analyze the particulate-bound PAH emissions, as well as their carcinogenic potential, from a typical baseline diesel engine using a promising alternative fuel obtained from the glycerol surplus in the biodiesel production industry. This advanced biofuel (Mo.bio) is a ternary mixture of residual glycerine-derived fuel (FAGE), a conventional fatty acid methyl ester (FAME) and a diesel fuel. Two operating conditions representative of the conflicting scenarios when studying polluting emissions (speeds of 50 km/h and 70 km/h typical of urban and extra-urban driving conditions) are used. In addition, with the purpose of deepening the understanding of the behavior of this new fuel, tests are carried out modifying the Exhaust Gas Recirculation (EGR) ratio. The PAH samples are collected before the aftertreatment systems in order to assess the possible formation of PAH with this type of fuel and to evaluate the options of the aftertreatment devices. Sampling is carried out using fiber-glass filters, extracting the trapped PAH using Soxhlet method. The analytical procedure (liquid chromatography with fluorescence detection) allows to appreciate differences between the different fuels and modes of operation, observing higher emissions of benzo[a]pyrene (BaP) and dibenz[a,h]anthracene (DahA) for the diesel fuel than for the mixture containing residual glycerine-derived fuel. Therefore, it is concluded that the fossil fuel has a larger carcinogenic potential in these conditions, and that the Mo.Bio fuel may possibly expand the EGR ratio range without increasing the requirement of the particle filter.