Proyecto de Investigación:
NANOCOSMOS 610256

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

610256

Autores

Publicaciones

PublicaciónRestringido
Thiols in the Interstellar Medium: First Detection of HC(O)SH and Confirmation of C2H5SH
(IOP Science Publishing, 2021-04-30) Rodríguez Almeida, L. F.; Jiménez Serra, I.; Rivilla, V. M.; Martín Pintado, J.; Zeng, S.; Tercero, B.; De Vicente, P.; Colzi, L.; Rico Villas, F.; Martín, S.; Requena Torres, M. A.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); European Research Council (ERC); European Commission (EC); Rodríguez Almeida, L. F. [0000-0002-9785-703X]; Jiménez Serra, I. [0000-0003-4493-8714]; Rivilla, V. M. [0000-0002-2887-5859]; Martín Pintado, J. [0000-0003-4561-3508]; Tercero, B. [0000-0002-4782-5259]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compound toward the Galactic Center quiescent cloud G+0.693–0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~1 × 10−10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~3 × 10−10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~5 × 10−9. Abundance ratios were calculated for the three SH-bearing species and their OH analogs, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH, and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.
PublicaciónRestringido
INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry
(American Institute of Physics, 2020-12-02) Santoro, G.; Sobrado, J. M.; Tajuelo Castilla, G.; Accolla, M.; Martínez, L.; Azpeitia, J.; Lauwaet, K.; Cernicharo, J.; Ellis, G. J.; Martín Gago, J. A.; European Commission (EC); Spanish Research Agency (AEI); Comunidad de Madrid; Castilla, G. [0000-0001-7877-2543]; Cernicharo, J. [0000-0002-3518-2524]; Martín Gago, J. A. [0000-0003-2663-491X]; Santoro, G. [0000-0003-4751-2209]; Martínez Orellana, L. [0000-0002-9370-2962]; Sobrado, J. M. [0000-0002-7359-0262]; Ellis, G. [0000-0003-4851-6092]
Laboratory astrochemistry aims at simulating, in the laboratory, some of the chemical and physical processes that operate in different regions of the universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice-dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulating the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the ultraviolet photochemistry of undecane (C11H24) at 14 K. Aliphatics are part of the carbonaceous cosmic dust, and recently, aliphatics and short n-alkanes have been detected in situ in the comet 67P/Churyumov-Gerasimenko.
PublicaciónAcceso Abierto
Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept
(EDP Science, 2017-12-22) Tanarro, I.; Alemán, Belén; De Vicente, P.; Gallego, J. D.; Pardo, Juan R.; Santoro, G.; Lauwaet, K.; Tercero, Felix; Díaz Pulido, A.; Moreno, E.; Agúndez, Marcelino; Goicoechea, J. R.; Sobrado, J. M.; López, J. A.; Martínez, L.; Doménech, Jose Luis; Herrero, V. J.; Hernández, J. M.; Peláez, R. J.; López Pérez, Jose A.; Gómez González, J.; Alonso, J. L.; Jiménez, Elena; Teyssier, D.; Makasheva, Kremena; Castellanos, Marcelo; Joblin, C.; Martín Gago, J. A.; Cernicharo, J.; Ministerio de Economía y Competitividad (MINECO)
We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41–49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10-3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.
PublicaciónAcceso Abierto
(Sub)mm-Wavelength Observations of Pre-Planetary Nebulae and Young Planetary Nebulae
(Multidisciplinary Digital Publishing Institute (MDPI), 2020-03-10) Sánchez Contreras, C.; National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); 0000-0002-6341-592X; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
This is a non-comprehensive review of observations of pre-Planetary Nebulae (pPNe) and young Planetary Nebulae (yPNe) at (sub)mm-wavelengths, a valuable window for probing multi-phased gas and dust in these objects. This contribution focuses on observations of molecular lines (from carbon monoxide—CO—and other species), and briefly at the end, on hydrogen radio recombination lines from the emerging H ii regions at the center of yPNe. The main goal of this contribution is to show the potential of (sub)mm-wavelength observations of pPNe/yPNe to help the community to devise and develop new observational projects that will bring us closer to a better understanding of these latest stages of the evolution of low-to-intermediate (∼0.8–8
PublicaciónAcceso Abierto
SiO, 29SiO, and 30SiO Emission from 67 Oxygen-rich Stars: A Survey of 61 Maser Lines from 7 to 1 mm
(IOP Science Publishing, 2021-03-26) Rizzo, J. R.; Cernicharo, J.; García Miró, C.; Agencia Estatal de Investigación (AEI); European Commission (EC); 0000-0002-8443-6631; 0000-0002-3518-2524
Circumstellar environments of oxygen-rich stars are among the strongest SiO maser emitters. Physical processes such as collisions, infrared pumping, and overlaps favor the inversion of level population and produce maser emission at different vibrational states. Despite numerous observational and theoretical efforts, we still do not have a unified picture including all of the physical processes involved in SiO maser emission. The aim of this work is to provide homogeneous data in a large sample of oxygen-rich stars. We present a survey of 67 oxygen-rich stars from 7 to 1 mm, in their rotational transitions from J = 1 → 0 to J = 5 → 4, for vibrational numbers v from 0 to 6 in the three main SiO isotopologs. We have used one of the 34 m NASA antennas at Robledo and the IRAM 30 m radio telescope. The first tentative detection of a v = 6 line is reported, as well as the detection of new maser lines. The highest vibrational levels seem confined to small volumes, presumably close to the stars. The J = 1 → 0, v = 2 line flux is greater than the corresponding v = 1 in almost half of the sample, which may confirm a predicted dependence on the pulsation cycle. This database is potentially useful in models which should consider most of the physical agents, time dependency, and mass-loss rates. As a by-product, we report detections of 27 thermal rotational lines from other molecules, including isotopologs of SiS, H2S, SO, SO2, and NaCl.

Unidades organizativas

Descripción

Palabras clave