Proyecto de Investigación:
CGL2017-92086-EXP

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

CGL2017-92086-EXP

Autores

Publicaciones

PublicaciónRestringido
Characterization of an electrostatic filter prototype for bioaerosol flowmetering for INTA Investigation Aerial Platforms
(Elsevier, 2019-08-20) Bardera, Rafael; García Magariño, A.; González, Elena; Aguilera, Á.; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)
The characterization of the airborne microorganisms at different altitudes of the atmosphere is usually conducted by means of aerial platforms. It is very interesting to know the biological processes in the atmosphere. However, there are problems associated to the fact that sampling systems are embarked on an aircraft and the low presence of microorganisms at high altitude. A prototype of a new electrostatic filter for bioaersol flowmetering dedicated to biology investigations has been developed. This prototype was designed to be installed on board in aerial platforms of INTA. The experimental characterization of the aerodynamic flow was performed in order to investigate the behaviour of the filter when different air intake widths and different mechanical deflectors are employed. A combination of these impactor with the filters based on industrial electrostatic precipitator technology have been studied. Non-intrusive Particle Image Velocimetry technique has been used to measure the flow field inside the filter when it was running under controlled conditions in laboratory. This study is a first investigation on the flow field of filter for bioaerosol flowmetering to be embarked on an aircraft. The results show the influence of each parameter in the flow field that could be used for further investigations and designs.
PublicaciónRestringido
Occurrence and transport of microplastics sampled within and above the planetary boundary layer
(Elsevier BV, 2021-03-20) González Pleiter, M.; Edo, C.; Aguilera, Á.; Viúdez Moreiras, Daniel; Pulido Reyes, G.; González Toril, Elena; De Diego Castilla, Graciela; Leganés, F.; Fernández Piñas, F.; Rosal, R.; Osuna Esteban, Susana; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); 0000-0003-0816-8775; 0000-0003-0340-7327; 0000-0002-7674-4167
Nowadays, there is no direct evidence about the presence of microplastics (MPs) in the atmosphere above ground level. Here, we investigated the occurrence, chemical composition, shape, and size of MPs in aircraft sampling campaigns flying within and above the planetary boundary layer (PBL). The results showed that MPs were present with concentrations ranging from 1.5 MPs m−3 above rural areas to 13.9 MPs m−3 above urban areas. MPs represented up to almost one third of the total amount of microparticles collected. Fourier Transform Infrared Spectroscopy allowed identifying seven types of MPs with the highest diversity corresponding to urban areas. Atmospheric transport and deposition simulations were performed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Air mass trajectory analyses showed that MPs could be transported more than 1000 km before being deposited. This pioneer study is the first evidence of the microplastic presence above PBL and their potential long-range transport from their point of release even crossing distant borders.
PublicaciónAcceso Abierto
Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
(Spring Nature Research Journals, 2020-04-22) González Toril, Elena; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Del Toro, Silvia Díaz; Bardera, Rafael; Puente Sánchez, Fernando; De Diego Castilla, Graciela; Aguilera, Á.; Osuna Esteban, Susana; Sor, Suthyvann; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); 0000-0002-5750-0765; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
PublicaciónAcceso Abierto
Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
(Springer Nature Research Journals, 2020-04-22) González Toril, Elena; Osuna, Toril; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Díaz del Toro, Silvia; Bardera, Rafael; Puente Sánchez, Fernando; De Diego Castilla, Graciela; Aguilera, Á.; Sor, Suthyvann; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
PublicaciónRestringido
Viable Microorganisms on Fibers Collected within and beyond the Planetary Boundary Layer
(ACS Publications, 2020-08-25) González Pleiter, M.; Edo, C.; Casero Chamorro, M. C.; Aguilera, Á.; González Toril, Elena; Wierzchos, J.; Leganés, F.; Fernández Piñas, F.; Rosal, R.; Agencia Estatal de Investigación (AEI); González Pleiter, M. [0000-0002-7674-4167]; Casero, M. C. [0000-0002-0611-4776]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Fibers are found in all environments. However, the impact of their presence on ecosystems and human health is not yet well understood, especially in the case of the atmosphere. In this work, we presented evidence that fibers traveling through the atmosphere act as vectors to spread microorganisms. Here, we investigated the presence of viable microorganisms on fibers collected within and beyond the planetary boundary layer during flights of C-212 aircraft over Central Spain. In total, seven fibers, six of which transported viable microorganisms, were isolated in two flights. The viability of the microorganisms was determined by confocal microscopy by means of the fluorescent probes SYBR-Green to detect microorganisms and CTC redox dye to assess their cellular respiration activity. The fibers that transported viable microorganisms were spectroscopically analyzed by micro-FTIR and identified as wool-silk and cellulose-cotton. Taken together, the results demonstrated that fibers host viable microorganisms when traveling through the lower free troposphere.

Unidades organizativas

Descripción

Palabras clave