Proyecto de Investigación: EVOLUCION FISICA Y QUIMICA DEL MEDIO INTERESTELAR, CIRCUNESTELAR, Y PLANETARIO
Cargando...
Colaboradores
Financiadores
ID
AYA2016-75066-C2-1-P
Autores
Publicaciones
Thiols in the Interstellar Medium: First Detection of HC(O)SH and Confirmation of C2H5SH
(IOP Science Publishing, 2021-04-30) Rodríguez Almeida, L. F.; Jiménez Serra, I.; Rivilla, V. M.; Martín Pintado, J.; Zeng, S.; Tercero, B.; De Vicente, P.; Colzi, L.; Rico Villas, F.; Martín, S.; Requena Torres, M. A.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); European Research Council (ERC); European Commission (EC); Rodríguez Almeida, L. F. [0000-0002-9785-703X]; Jiménez Serra, I. [0000-0003-4493-8714]; Rivilla, V. M. [0000-0002-2887-5859]; Martín Pintado, J. [0000-0003-4561-3508]; Tercero, B. [0000-0002-4782-5259]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compound toward the Galactic Center quiescent cloud G+0.693–0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~1 × 10−10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~3 × 10−10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~5 × 10−9. Abundance ratios were calculated for the three SH-bearing species and their OH analogs, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH, and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.
Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept
(EDP Science, 2017-12-22) Tanarro, I.; Alemán, Belén; De Vicente, P.; Gallego, J. D.; Pardo, Juan R.; Santoro, G.; Lauwaet, K.; Tercero, Felix; Díaz Pulido, A.; Moreno, E.; Agúndez, Marcelino; Goicoechea, J. R.; Sobrado, J. M.; López, J. A.; Martínez, L.; Doménech, Jose Luis; Herrero, V. J.; Hernández, J. M.; Peláez, R. J.; López Pérez, Jose A.; Gómez González, J.; Alonso, J. L.; Jiménez, Elena; Teyssier, D.; Makasheva, Kremena; Castellanos, Marcelo; Joblin, C.; Martín Gago, J. A.; Cernicharo, J.; Ministerio de Economía y Competitividad (MINECO)
We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41–49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10-3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.
(Sub)mm-Wavelength Observations of Pre-Planetary Nebulae and Young Planetary Nebulae
(Multidisciplinary Digital Publishing Institute (MDPI), 2020-03-10) Sánchez Contreras, C.; National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); 0000-0002-6341-592X; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
This is a non-comprehensive review of observations of pre-Planetary Nebulae (pPNe) and young Planetary Nebulae (yPNe) at (sub)mm-wavelengths, a valuable window for probing multi-phased gas and dust in these objects. This contribution focuses on observations of molecular lines (from carbon monoxide—CO—and other species), and briefly at the end, on hydrogen radio recombination lines from the emerging H ii regions at the center of yPNe. The main goal of this contribution is to show the potential of (sub)mm-wavelength observations of pPNe/yPNe to help the community to devise and develop new observational projects that will bring us closer to a better understanding of these latest stages of the evolution of low-to-intermediate (∼0.8–8
Evolutionary view through the starless cores in Taurus Deuteration in TMC 1-C and TMC 1-CP
(EDP Sciences, 2021-06-15) Navarro Almaida, D.; Fuente, A.; Majumdar, L.; Wakelam, V.; Caselli, P.; Rivière Marichalar, P.; Treviño Morales, S. P.; Cazaux, S.; Jiménez Serra, I.; Kramer, C.; Chacón Tanarro, A.; Kirk, J. M.; Ward Thompson, D.; Tafalla, M.; Centre National D'Etudes Spatiales (CNES); Agencia Estatal de Investigación (AEI); European Research Council (ERC); Navarro Almaida, D. [0000-0002-8499-7447]; Fuente, A. [0000-0001-6317-6343]; Wakelam, V. [0000-0001-9676-2605]; Caselli, P. [0000-0003-1481-7911]; Rivière Marichalar, P. [0000-0003-0969-8137]; Treviño Morales, S. P. [0000-0002-4033-2881]; Ward Thompson, D. [0000-0003-1140-2761]; Jiménez Serra, I. [0000-0003-4493-8714]; Tafalla, M. [0000-0002-2569-1253]
Context. The chemical and physical evolution of starless and pre-stellar cores are of paramount importance to understanding the process of star formation. The Taurus Molecular Cloud cores TMC 1-C and TMC 1-CP share similar initial conditions and provide an excellent opportunity to understand the evolution of the pre-stellar core phase.
Aims. We investigated the evolutionary stage of starless cores based on observations towards the prototypical dark cores TMC 1-C and TMC 1-CP.
Methods. We mapped the prototypical dark cores TMC 1-C and TMC 1-CP in the CS 3 → 2, C34S 3 → 2, 13CS 2 → 1, DCN 1 → 0, DCN 2 → 1, DNC 1 → 0, DNC 2 → 1, DN13C 1 → 0, DN13C 2 → 1, N2H+ 1 → 0, and N2D+ 1 → 0 transitions. We performed a multi-transitional study of CS and its isotopologs, DCN, and DNC lines to characterize the physical and chemical properties of these cores. We studied their chemistry using the state-of-the-art gas-grain chemical code NAUTILUS and pseudo time-dependent models to determine their evolutionary stage.
Results. The central nH volume density, the N2H+ column density, and the abundances of deuterated species are higher in TMC 1-C than in TMC 1-CP, yielding a higher N2H+ deuterium fraction in TMC 1-C, thus indicating a later evolutionary stage for TMC 1-C. The chemical modeling with pseudo time-dependent models and their radiative transfer are in agreement with this statement, allowing us to estimate a collapse timescale of ~1 Myr for TMC 1-C. Models with a younger collapse scenario or a collapse slowed down by a magnetic support are found to more closely reproduce the observations towards TMC 1-CP.
Conclusions. Observational diagnostics seem to indicate that TMC 1-C is in a later evolutionary stage than TMC 1-CP, with a chemical age ~1 Myr. TMC 1-C shows signs of being an evolved core at the onset of star formation, while TMC 1-CP appears to be in an earlier evolutionary stage due to a more recent formation or, alternatively, a collapse slowed down by a magnetic support.
Discovery in space of ethanolamine, the simplest phospholipid head group
(National Academy of Sciences, 2021-06-01) Rivilla, V. M.; Jiménez Serra, I.; Martín Pintado, J.; Briones, C.; Rodríguez Almeida, L. F.; Rico Villas, F.; Tercero, B.; Zeng, S.; Colzi, L.; De Vicente, P.; Martín, S.; Requena Torres, M. A.; European Commission (EC); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Rivilla, V. M. [0000-0002-2887-5859]; Tercero, B. [0000-0002-4782-5259]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, NH2CH2CH2OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51 +/- 0.07) x 1013 cm-2, implying a molecular abundance with respect to H2 of (0.9 - 1.4) x 10-10. Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite (10-6). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.