Proyecto de Investigación:
ESP2014-55811-C2-1-P

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

ESP2014-55811-C2-1-P

Autores

Publicaciones

PublicaciónRestringido
Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance.
(Mary Ann Liebert Publishers, 2020-03-02) Carrizo, D.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Gil Lozano, C.; Sánchez García, L.; Prieto Ballesteros, O.; Medina, J.; Rull, F.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Fernández Sampedro, M. [0000-0003-1932-7591]; Lozano, C. G. [0000-0003-3500-2850]; Muñoz Iglesias, V. [0000-0002-1159-9093]; Sánchez García, L. [0000-0002-7444-1242]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Carrizo, D. [0000-0003-1568-4591]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix in a highly oxidative environment. We investigated the feasibility of detecting basic organics (linear and branched lipid molecules) with Raman laser spectroscopy, an instrument onboard the ExoMars rover, when exposed to oxidant conditions. We compared the detectability of six lipid molecules (alkanes, alkanols, fatty acid, and isoprenoid) before and after an oxidation treatment (15 days with hydrogen peroxide), with and without mineral matrix support (amorphous silica rich vs. iron rich). Raman and infrared spectrometry was combined with gas chromatography-mass spectrometry to determine detection limits and technical constrains. We observed different spectral responses to degradation depending on the lipid molecule and mineral substrate, with the silica-rich material showing better preservation of organic signals. These findings will contribute to the interpretation of Raman laser spectroscopy results on cores from the ExoMars rover landing site, the hydrated silica-enriched delta fan on Cogoon Vallis (Oxia Planum).
PublicaciónRestringido
Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life
(Elsevier BV, 2020-11-15) Blanc, M.; Prieto Ballesteros, O.; André, N.; Gómez Elvira, J.; Jones, G.; Sterken, V.; Desprats, W.; Gurvits, L. I.; Khurana, K.; Balmino, G.; Blöcker, A.; Broquet, R.; Bunce, E.; Cavel, C.; Choblet, G.; Colins, G.; Coradini, M.; Cooper, J.; Dirkx, D.; Fontaine, D.; Garnier, P.; Gaudin, D.; Hartogh, P.; Hussmann, H.; Genova, A.; Less, L.; Jäggi, A.; Kempf, S.; Krupp, N.; Lara, L.; Lasue, J.; Lainey, V.; Leblanc, F.; Lebreton, J. P.; Longobardo, A.; Lorenz, R.; Martins, P.; Martins, Z.; Marty, J. C.; Masters, A.; Mimoun, D.; Palumba, E.; Parro García, V.; Regnier, P.; Saur, J.; Schutte, A.; Sittler, E. C.; Spohn, T.; Srama, R.; Stephan, K.; Szego, K.; Tosi, F.; Vance, S.; Wagner, R.; Van Hoolst, T.; Volwerk, M.; Wahlund, J. E.; Westall, F.; Wurz, P.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); 0000-0003-4002-2434; 0000-0002-2278-1210; 0000-0002-1797-2741; 0000-0002-9820-8584; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Europa is the closest and probably the most promising target to search for extant life in the Solar System, based on complementary evidence that it may fulfil the key criteria for habitability: the Galileo discovery of a sub-surface ocean; the many indications that the ice shell is active and may be partly permeable to transfer of chemical species, biomolecules and elementary forms of life; the identification of candidate thermal and chemical energy sources necessary to drive a metabolic activity near the ocean floor. In this article we are proposing that ESA collaborates with NASA to design and fly jointly an ambitious and exciting planetary mission, which we call the Joint Europa Mission (JEM), to reach two objectives: perform a full characterization of Europa's habitability with the capabilities of a Europa orbiter, and search for bio-signatures in the environment of Europa (surface, subsurface and exosphere) by the combination of an orbiter and a lander. JEM can build on the advanced understanding of this system which the missions preceding JEM will provide: Juno, JUICE and Europa Clipper, and on the Europa lander concept currently designed by NASA (Maize, report to OPAG, 2019). We propose the following overarching goals for our Joint Europa Mission (JEM): Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life at its surface and in its sub-surface and exosphere. We address these goals by a combination of five Priority Scientific Objectives, each with focused measurement objectives providing detailed constraints on the science payloads and on the platforms used by the mission. The JEM observation strategy will combine three types of scientific measurement sequences: measurements on a high-latitude, low-altitude Europan orbit; in-situ measurements to be performed at the surface, using a soft lander; and measurements during the final descent to Europa's surface. The implementation of these three observation sequences will rest on the combination of two science platforms: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and an orbiter to perform the orbital survey and descent sequences. We describe a science payload for the lander and orbiter that will meet our science objectives. We propose an innovative distribution of roles for NASA and ESA; while NASA would provide an SLS launcher, the lander stack and most of the mission operations, ESA would provide the carrier-orbiter-relay platform and a stand-alone astrobiology module for the characterization of life at Europa's surface: the Astrobiology We Laboratory (AWL). Following this approach, JEM will be a major exciting joint venture to the outer Solar System of NASA and ESA, working together toward one of the most exciting scientific endeavours of the 21st century: to search for life beyond our own planet.
PublicaciónAcceso Abierto
Experimental Petrology to Understand Europa's Crust
(American Geophysical Union: Advancing Earth and Space Science, 2019-10-21) Muñoz Iglesias, V.; Prieto Ballesteros, O.; López, I.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); 0000-0002-1159-9093; 0000-0002-2278-1210; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The Jovian moon Europa is a prime target for astrobiology. A global subsurface water ocean and a geologically young surface provide evidence of an active planetary body with a potential deep habitable environment. Tectonism and cryomagmatism are both agents of resurfacing, with structures on the surface spatially related to reddish non‐icy materials that could represent crystallized volatile and salt‐rich fluids from the interior, possibly from the ocean or shallower aqueous bodies. Cryomagmatism could therefore be a mechanism for exposing the underlying liquid layers to the surface and could hold paramount importance for understanding the physical and chemical evolution of fluids during their ascent and emplacement and their connection with geological features at the surface. With these premises, we perform a set of laboratory experiments simulating the evolution of different fluids under the conditions in Europa's crust. These experiments allow us to constrain the physico‐chemical and textural changes experienced by the different fluids and solids that are potentially emplaced within the icy crust and determine how they are affected by such secondary processes as reheating, melting, and ultimate recrystallization (e.g., in response to the emplacement of a second diapir close to the first one or tidal reheating). Based on these experimental results, we explore the connection of cryomagmas and their evolution near the surface to geologic features present on Europa's surface, such as pits, uplifts/domes, and microchaos regions, as well as the link with explosive cryovolcanism responsible for putative plumes at Europa.
PublicaciónAcceso Abierto
Can Halophilic and Psychrophilic Microorganisms Modify the Freezing/Melting Curve of Cold Salty Solutions? Implications for Mars Habitability
(Mary Ann Liebert Publishers, 2020-09-15) García Descalzo, L.; Gil Lozano, C.; Muñoz Iglesias, V.; Prieto Ballesteros, O.; Azua Bustos, A.; Fairén, Alberto G.; European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Agencia Estatal de Investigación (AEI); García Descalzo, L. [0000-0002-0083-6786]; Gil Lozano, C. [0000-0003-3500-2850]; Muñoz Iglesias, V. [0000-0002-1159-9093]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Azua Bustos, A. [0000-0002-2278-1210]; Fairén, A. G. [0000-0002-2938-6010]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We present the hypothesis that microorganisms can change the freezing/melting curve of cold salty solutions by protein expression, as it is known that proteins can affect the liquid-to-ice transition, an ability that could be of ecological advantage for organisms on Earth and on Mars. We tested our hypothesis by identifying a suitable candidate, the well-known psycrophile and halotolerant bacteriaRhodococcussp. JG3, and analyzing its response in culture conditions that included specific hygroscopic salts relevant to Mars-that is, highly concentrated magnesium perchlorate solutions of 20 wt % and 50 wt % Mg(ClO4)(2)at both end members of the eutectic concentration (44 wt %)-and subfreezing temperatures (263 K and 253 K). Using a combination of techniques of molecular microbiology and aqueous geochemistry, we evaluated the potential roles of proteins over- or underexpressed as important players in different mechanisms for the adaptability of life to cold environments. We recorded the changes observed by micro-differential scanning calorimetry. Unfortunately,Rhodococcussp. JG3 did not show our hypothesized effect on the melting characteristics of cold Mg-perchlorate solutions. However, the question remains as to whether our novel hypothesis that halophilic/psychrophilic bacteria or archaea can alter the freezing/melting curve of salt solutions could be validated. The null result obtained after analyzing just one case lays the foundation to continue the search for proteins produced by microorganisms that thrive in very cold, high-saline solutions, which would involve testing different microorganisms with different salt components. The immediate implications for the habitability of Mars are discussed.

Unidades organizativas

Descripción

Palabras clave