Publicación: Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks
dc.contributor.author | Delgado, A. | |
dc.contributor.author | Moreno, M. | |
dc.contributor.author | Vázquez, L. F. | |
dc.contributor.author | Martín Gago, J. A. | |
dc.contributor.author | Briones, C. | |
dc.contributor.funder | Ministerio de Economía y Competitividad (MINECO) | |
dc.contributor.funder | Comunidad de Madrid | |
dc.contributor.funder | Agencia Estatal de Investigación (AEI) | |
dc.contributor.orcid | Delgado, A. [0000-0003-4868-3712] | |
dc.contributor.orcid | Moreno, M. [0000-0002-6065-4095] | |
dc.contributor.orcid | MartínGago, J. A. [0000-0003-2663-491X] | |
dc.contributor.orcid | Briones, C. [0000-0003-2213-8353] | |
dc.contributor.other | Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737 | |
dc.date.accessioned | 2021-04-14T11:06:26Z | |
dc.date.available | 2021-04-14T11:06:26Z | |
dc.date.issued | 2019-11-04 | |
dc.description.abstract | Advanced microscopy techniques currently allow scientists to visualize biomolecules at high resolution. Among them, atomic force microscopy (AFM) shows the advantage of imaging molecules in their native state, without requiring any staining or coating of the sample. Biopolymers, including proteins and structured nucleic acids, are flexible molecules that can fold into alternative conformations for any given monomer sequence, as exemplified by the different three-dimensional structures adopted by RNA in solution. Therefore, the manual analysis of images visualized by AFM and other microscopy techniques becomes very laborious and time-consuming (and may also be inadvertently biased) when large populations of biomolecules are studied. Here we present a novel morphology clustering software, based on particle isolation and artificial neural networks, which allows the automatic image analysis and classification of biomolecules that can show alternative conformations. It has been tested with a set of AFM images of RNA molecules (a 574 nucleotides-long functional region of the hepatitis C virus genome that contains its internal ribosome entry site element) structured in folding buffers containing 0, 2, 4, 6 or 10 mM Mg 2+ . The developed software shows a broad applicability in the microscopy-based analysis of biopolymers and other complex biomolecules. | es |
dc.description.peerreviewed | Peer review | es |
dc.description.sponsorship | This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) funded by the EU through the FEDER Programme under Grant BIO2016-79618-R and Grant MAT2017-85089-C2-1-R, in part by the Spanish State Research Agency (AEI) through the Unidad de Excelencia María de Maeztu-Centro de Astrobiología (CSIC-INTA) under Project MDM-2017-0737, and in part by the Comunidad de Madrid under Grant S2018/NMT-4349. | es |
dc.identifier.citation | IEEE Access 7: 160304 - 160323(2019) | es |
dc.identifier.doi | 10.1109/ACCESS.2019.2950984 | |
dc.identifier.e-issn | 2169-3536 | |
dc.identifier.funder | http://dx.doi.org/10.13039/501100003329 | |
dc.identifier.funder | http://dx.doi.org/10.13039/501100011033 | |
dc.identifier.funder | http://dx.doi.org/10.13039/100012818 | |
dc.identifier.other | https://ieeexplore.ieee.org/document/8890647 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12666/366 | |
dc.language.iso | eng | es |
dc.publisher | Institute of Electrical and Electronics Engineers | es |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2016-79618-R/ES/DESARROLLO Y CARACTERIZACION FUNCIONAL DE APTAMEROS COMO HERRAMIENTAS BIOTECNOLOGICAS FRENTE A VIRUS RNA PATOGENOS/ | |
dc.relation | info:eu-repo/grantAgreement/ES/MINECO/MAT2017-85089-C2-1-R | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Artificial neural networks | es |
dc.subject | Atomic force microscopy (AFM) | es |
dc.subject | Biomolecules | es |
dc.subject | Growing cell structures (GCS) | es |
dc.subject | Hepatitis C virus (HCV) | es |
dc.subject | Image analysis | es |
dc.subject | Internal ribosome entry site (IRES) | es |
dc.subject | Ribonucleic acid (RNA) | es |
dc.subject | Self-organizing maps (SOM) | es |
dc.title | Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks | es |
dc.type | info:eu-repo/semantics/article | es |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Morphology clustering software for AFM images, based on particles isolation and artificial neural networks.pdf
- Tamaño:
- 7.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 4.82 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: