Publicación:
Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks

dc.contributor.authorDelgado, A.
dc.contributor.authorMoreno, M.
dc.contributor.authorVázquez, L. F.
dc.contributor.authorMartín Gago, J. A.
dc.contributor.authorBriones, C.
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)
dc.contributor.funderComunidad de Madrid
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.orcidDelgado, A. [0000-0003-4868-3712]
dc.contributor.orcidMoreno, M. [0000-0002-6065-4095]
dc.contributor.orcidMartínGago, J. A. [0000-0003-2663-491X]
dc.contributor.orcidBriones, C. [0000-0003-2213-8353]
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2021-04-14T11:06:26Z
dc.date.available2021-04-14T11:06:26Z
dc.date.issued2019-11-04
dc.description.abstractAdvanced microscopy techniques currently allow scientists to visualize biomolecules at high resolution. Among them, atomic force microscopy (AFM) shows the advantage of imaging molecules in their native state, without requiring any staining or coating of the sample. Biopolymers, including proteins and structured nucleic acids, are flexible molecules that can fold into alternative conformations for any given monomer sequence, as exemplified by the different three-dimensional structures adopted by RNA in solution. Therefore, the manual analysis of images visualized by AFM and other microscopy techniques becomes very laborious and time-consuming (and may also be inadvertently biased) when large populations of biomolecules are studied. Here we present a novel morphology clustering software, based on particle isolation and artificial neural networks, which allows the automatic image analysis and classification of biomolecules that can show alternative conformations. It has been tested with a set of AFM images of RNA molecules (a 574 nucleotides-long functional region of the hepatitis C virus genome that contains its internal ribosome entry site element) structured in folding buffers containing 0, 2, 4, 6 or 10 mM Mg 2+ . The developed software shows a broad applicability in the microscopy-based analysis of biopolymers and other complex biomolecules.es
dc.description.peerreviewedPeer reviewes
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) funded by the EU through the FEDER Programme under Grant BIO2016-79618-R and Grant MAT2017-85089-C2-1-R, in part by the Spanish State Research Agency (AEI) through the Unidad de Excelencia María de Maeztu-Centro de Astrobiología (CSIC-INTA) under Project MDM-2017-0737, and in part by the Comunidad de Madrid under Grant S2018/NMT-4349.es
dc.identifier.citationIEEE Access 7: 160304 - 160323(2019)es
dc.identifier.doi10.1109/ACCESS.2019.2950984
dc.identifier.e-issn2169-3536
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033
dc.identifier.funderhttp://dx.doi.org/10.13039/100012818
dc.identifier.otherhttps://ieeexplore.ieee.org/document/8890647
dc.identifier.urihttp://hdl.handle.net/20.500.12666/366
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2016-79618-R/ES/DESARROLLO Y CARACTERIZACION FUNCIONAL DE APTAMEROS COMO HERRAMIENTAS BIOTECNOLOGICAS FRENTE A VIRUS RNA PATOGENOS/
dc.relationinfo:eu-repo/grantAgreement/ES/MINECO/MAT2017-85089-C2-1-R
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial neural networkses
dc.subjectAtomic force microscopy (AFM)es
dc.subjectBiomoleculeses
dc.subjectGrowing cell structures (GCS)es
dc.subjectHepatitis C virus (HCV)es
dc.subjectImage analysises
dc.subjectInternal ribosome entry site (IRES)es
dc.subjectRibonucleic acid (RNA)es
dc.subjectSelf-organizing maps (SOM)es
dc.titleMorphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Morphology clustering software for AFM images, based on particles isolation and artificial neural networks.pdf
Tamaño:
7.82 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones