Publicación:
The CARMENES search for exoplanets around M dwarfs A deep learning approach to determine fundamental parameters of target stars

dc.contributor.authorPassegger, V. M.
dc.contributor.authorBello García, A.
dc.contributor.authorOrdieres Meré, J.
dc.contributor.authorCaballero, J. A.
dc.contributor.authorSchweitzer, A.
dc.contributor.authorGonzález Marcos, A.
dc.contributor.authorRibas, I.
dc.contributor.authorReiners, A.
dc.contributor.authorQuirrenbach, A.
dc.contributor.authorAmado, P. J.
dc.contributor.authorAzzaro, M.
dc.contributor.authorBauer, F. F.
dc.contributor.authorBéjar, V. J. S.
dc.contributor.authorCortés Contreras, M.
dc.contributor.authorDreizler, S.
dc.contributor.authorHatzes, A. P.
dc.contributor.authorHenning, T.
dc.contributor.authorJeffers, S. V.
dc.contributor.authorKaminski, A.
dc.contributor.authorKürster, M.
dc.contributor.authorLafarga, M.
dc.contributor.authorMarfil, E.
dc.contributor.authorMontes, D.
dc.contributor.authorMorales, J. C.
dc.contributor.authorNagel, E.
dc.contributor.authorSarro, L. M.
dc.contributor.authorTabernero, H. M.
dc.contributor.authorZechmeister, M.
dc.contributor.authorSolano, Enrique
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.funderFundacao para a Ciencia e a Tecnologia (FCT)
dc.contributor.funderNational Aeronautics and Space Administration (NASA)
dc.contributor.orcidBello García, A. [0000-0001-8691-3342]
dc.contributor.orcidOrdieres Meré, J. [0000-0002-9677-6764]
dc.contributor.orcidCaballero, J. A. [0000-0002-7349-1387]
dc.contributor.orcidGonzález Marcos, A. [0000-0003-4684-659X]
dc.contributor.orcidRibas, I. [0000-0002-6689-0312]
dc.contributor.orcidAzzaro, M. [0000-0002-1317-0661]
dc.contributor.orcidKürster, M. [0000-0002-1765-9907]
dc.contributor.orcidMarfil, E. [0000-0001-8907-4775]
dc.contributor.orcidMontes, D. [0000-0002-7779-238X]
dc.contributor.orcidMorales, J. C. [0000-0003-0061-518X]
dc.contributor.orcidNagel, E. [0000-0002-4019-3631]
dc.contributor.orcidSarro, L. M. [0000-0002-5622-5191]
dc.contributor.orcidTabernero, H. [0000-0002-8087-4298]
dc.contributor.orcidZechmesister, M. [0000-0002-6532-4378]
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2021-04-19T08:07:03Z
dc.date.available2021-04-19T08:07:03Z
dc.date.issued2020-09-30
dc.description.abstractExisting and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.es
dc.description.peerreviewedPeer reviewes
dc.description.sponsorshipWe thank an anonymous referee for helpful comments that improved the quality of this paper. CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas(CSIC), European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisicade Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 "Blue Planets around Red Stars", the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. We acknowledge financial support from NASA through grant NNX17AG24G, the Agencia Estatal de Investigacion of the Ministerio de Ciencia through fellowship FPU15/01476, Innovacion y Universidades and the ERDF through projects PID2019-109522GB-C51/2/3/4, AYA2016-79425-C3-1/2/3-P and AYA2018-84089, the FundacAo para a Ciencia e a Tecnologia through and ERDF through grants UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020, PTDC/FIS-AST/28953/2017, and COMPETE2020 - Programa Operacional Competitividade e InternacionalizacAo POCI-01-0145-FEDER-028953; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737).es
dc.identifier.citationAstronomy and Astrophysics 642: A22(2020)es
dc.identifier.doi10.1051/0004-6361/202038787
dc.identifier.e-issn1432-0746
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001871
dc.identifier.funderhttp://dx.doi.org/10.13039/100000104
dc.identifier.issn0004-6361
dc.identifier.otherhttps://www.aanda.org/articles/aa/abs/2020/10/aa38787-20/aa38787-20.html
dc.identifier.urihttp://hdl.handle.net/20.500.12666/403
dc.language.isoenges
dc.publisherEDP Scienceses
dc.relationENTENDIENDO LA ESTRUCTURA INTERNA, LA EVOLUCION Y LA VARIABILIDAD DE ESTRELLAS DE BAJA MASA CON PLANETAS
dc.relationEXPLOTACION CIENTIFICA DE CARMENES Y PREPARACION DE LOS PROXIMOS BUSCADORES DE EXOPLANETAS
dc.relationENANAS MARRONES Y PLANETAS AISLADOS Y COMO COMPAÑEROS DE ESTRELLAS
dc.relationPID2019-109522GB-C53
dc.relationPID2019-109522GB-C54
dc.relationENANAS MARRONES Y PLANETAS AISLADOS Y ALREDEDOR DE ESTRELLAS
dc.relationPID2019-109522GB-C52
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© ESO 2020
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMethods: data analysises
dc.subjectTechniques: spectroscopices
dc.subjectStars: fundamental parameterses
dc.subjectStars: late typees
dc.subjectStars: low masses
dc.titleThe CARMENES search for exoplanets around M dwarfs A deep learning approach to determine fundamental parameters of target starses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumberAYA2016-79425-C3-3-P
oaire.awardNumberAYA2016-79425-C3-1-P
oaire.awardNumberAYA2016-79425-C3-2-P
oaire.awardNumberPID2019-109522GB-C53
oaire.awardNumberPID2019-109522GB-C54
oaire.awardNumberPID2019-109522GB-C51
oaire.awardNumberPID2019-109522GB-C52
oaire.awardTitleENTENDIENDO LA ESTRUCTURA INTERNA, LA EVOLUCION Y LA VARIABILIDAD DE ESTRELLAS DE BAJA MASA CON PLANETAS
oaire.awardTitleEXPLOTACION CIENTIFICA DE CARMENES Y PREPARACION DE LOS PROXIMOS BUSCADORES DE EXOPLANETAS
oaire.awardTitleENANAS MARRONES Y PLANETAS AISLADOS Y COMO COMPAÑEROS DE ESTRELLAS
oaire.awardTitlePID2019-109522GB-C53
oaire.awardTitlePID2019-109522GB-C54
oaire.awardTitleENANAS MARRONES Y PLANETAS AISLADOS Y ALREDEDOR DE ESTRELLAS
oaire.awardTitlePID2019-109522GB-C52
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1029
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1075
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1096
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1233
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1235
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1238
oaire.awardURIhttps://inta.metricsalad.com/handle/123456789/1239
relation.isAuthorOfPublication8422b09e-f521-4db8-8b16-a1d6d6f8351a
relation.isAuthorOfPublication.latestForDiscovery8422b09e-f521-4db8-8b16-a1d6d6f8351a
relation.isProjectOfPublicationdce764ec-aa34-493b-81b2-343a20fe9e49
relation.isProjectOfPublicationc6dae004-0d3c-45fb-8471-64248889b104
relation.isProjectOfPublicationbc028bd3-edff-4bcc-8a75-9a81798bfa32
relation.isProjectOfPublication6797cc35-b1cc-46d1-843f-f7360152ab06
relation.isProjectOfPublicationa45975b6-cf73-4e1b-92d5-520e1cff4ba8
relation.isProjectOfPublication1118c938-6673-400e-90f4-88833bd11b5a
relation.isProjectOfPublication05c31e5e-19e9-4733-9446-33f9a919a950
relation.isProjectOfPublication.latestForDiscoverydce764ec-aa34-493b-81b2-343a20fe9e49

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
aa38787-20.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones