Publicación:
Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign

dc.contributor.authorTirpitz, J. L.
dc.contributor.authorFrieb, U.
dc.contributor.authorHendrick, F.
dc.contributor.authorAlberti, C.
dc.contributor.authorAllaart, M.
dc.contributor.authorApituley, A.
dc.contributor.authorBais, A.
dc.contributor.authorBeirle, S.
dc.contributor.authorBerkhout, S.
dc.contributor.authorBognar, K.
dc.contributor.authorBösch, T.
dc.contributor.authorBruchkouski, I.
dc.contributor.authorCede, A.
dc.contributor.authorLok Chan, K.
dc.contributor.authorDen Hoed, M.
dc.contributor.authorDonner, S.
dc.contributor.authorDrosoglou, T.
dc.contributor.authorFayt, C.
dc.contributor.authorFriedrich, M. M.
dc.contributor.authorFrumau, A.
dc.contributor.authorGast, L.
dc.contributor.authorGielen, C.
dc.contributor.authorGómez Martín, L.
dc.contributor.authorHao, N.
dc.contributor.authorHensen, A.
dc.contributor.authorHenzing, B.
dc.contributor.authorHermans, C.
dc.contributor.authorJin, J.
dc.contributor.authorKreher, K.
dc.contributor.authorKuhn, J.
dc.contributor.authorLampel, J.
dc.contributor.authorLi, A.
dc.contributor.authorLiu, C.
dc.contributor.authorLiu, H.
dc.contributor.authorMa, J.
dc.contributor.authorMerlaud, A.
dc.contributor.authorPeters, E.
dc.contributor.authorPinardi, G.
dc.contributor.authorPiters, Ankie.
dc.contributor.authorPlatt, U.
dc.contributor.authorPuentedura, O.
dc.contributor.authorRichter, A.
dc.contributor.authorSchmitt, S.
dc.contributor.authorSpinei, E.
dc.contributor.authorStein Zweers, D.
dc.contributor.authorStrong, K.
dc.contributor.authorSwart, D.
dc.contributor.authorTack, F.
dc.contributor.authorTiefengraber, M.
dc.contributor.authorVan der Hoff, R.
dc.contributor.authorVan Roozendael, M.
dc.contributor.authorVlemmix, T.
dc.contributor.authorVonk, J.
dc.contributor.authorWagner, T.
dc.contributor.authorWang, Y.
dc.contributor.authorWang, Z.
dc.contributor.authorWenig, M.
dc.contributor.authorWiegner, M.
dc.contributor.authorWittrock, F.
dc.contributor.authorXie, P.
dc.contributor.authorXing, C.
dc.contributor.authorXu, J.
dc.contributor.authorYela González, M.
dc.contributor.authorZhang, C.
dc.contributor.authorZhao, X.
dc.contributor.funderEuropean Space Agency (ESA)
dc.contributor.funderEuropean Commission (EC)
dc.contributor.funderCanadian Space Agency
dc.contributor.funderNational Natural Science Foundation of China (NSFC)
dc.contributor.funderNatural Sciences and Engineering Research Council of Canada
dc.contributor.funderDeutsche Forschungsgemeinschaft (DFG)
dc.contributor.funderEuropean Research Council (ERC)
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)
dc.contributor.orcidFrieß, U. [0000-0001-7176-7936]
dc.contributor.orcidAlberti, C. [0000-0002-1574-5393]
dc.contributor.orcidApituley, A. [0000-0001-8821-6348]
dc.contributor.orcidBais, A. [0000-0003-3899-2001]
dc.contributor.orcidBeirle, S. [0000-0002-7196-0901]
dc.contributor.orcidBerkhout, S. [0000-0001-5447-8868]
dc.contributor.orcidBognar, K. [0000-0003-4619-2020]
dc.contributor.orcidBösch, T. [0000-0003-4230-8129]
dc.contributor.orcidDonner, S. [0000-0001-8868-167X]
dc.contributor.orcidFrumau, A. [0000-0001-5940-0285]
dc.contributor.orcidGómez Martín, L. [0000-0002-6655-7659]
dc.contributor.orcidHenzing, B. [0000-0001-6456-8189]
dc.contributor.orcidLampel, J. [0000-0001-7370-9342]
dc.contributor.orcidLiu, C. [0000-0002-3759-9219]
dc.contributor.orcidMa, J. [0000-0002-9510-5432]
dc.contributor.orcidPeters, E. [0000-0002-8380-3137]
dc.contributor.orcidPinardi, G. [0000-0001-5428-916X]
dc.contributor.orcidPuentedura, O. [0000-0002-4286-1867]
dc.contributor.orcidRichter, A. [0000-0003-3339-212X]
dc.contributor.orcidStein Zweers, D. [0000-0002-1180-5790]
dc.contributor.orcidStrong, K. [0000-0001-9947-1053]
dc.contributor.orcidSwart, D. [0000-0002-6128-337X]
dc.contributor.orcidVlemmix, T. [0000-0003-2584-3402]
dc.contributor.orcidWang, Y. [0000-0002-9828-9871]
dc.contributor.orcidZhang, C. [0000-0003-2092-9135]
dc.date.accessioned2022-02-11T13:06:31Z
dc.date.available2022-02-11T13:06:31Z
dc.date.issued2021-01-04
dc.descriptionThe supplement related to this article is available online at: https://doi.org/10.5194/amt-14-1-2021-supplement.es
dc.description.abstractThe second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) took place in Cabauw (the Netherlands) in September 2016 with the aim of assessing the consistency of multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of tropospheric species (NO2, HCHO, O3, HONO, CHOCHO and O4). This was achieved through the coordinated operation of 36 spectrometers operated by 24 groups from all over the world, together with a wide range of supporting reference observations (in situ analysers, balloon sondes, lidars, long-path DOAS, direct-sun DOAS, Sun photometer and meteorological instruments). In the presented study, the retrieved CINDI-2 MAX-DOAS trace gas (NO2, HCHO) and aerosol vertical profiles of 15 participating groups using different inversion algorithms are compared and validated against the colocated supporting observations, with the focus on aerosol optical thicknesses (AOTs), trace gas vertical column densities (VCDs) and trace gas surface concentrations. The algorithms are based on three different techniques: six use the optimal estimation method, two use a parameterized approach and one algorithm relies on simplified radiative transport assumptions and analytical calculations. To assess the agreement among the inversion algorithms independent of inconsistencies in the trace gas slant column density acquisition, participants applied their inversion to a common set of slant columns. Further, important settings like the retrieval grid, profiles of O3, temperature and pressure as well as aerosol optical properties and a priori assumptions (for optimal estimation algorithms) have been prescribed to reduce possible sources of discrepancies. The profiling results were found to be in good qualitative agreement: most participants obtained the same features in the retrieved vertical trace gas and aerosol distributions; however, these are sometimes at different altitudes and of different magnitudes. Under clear-sky conditions, the root-mean-square differences (RMSDs) among the results of individual participants are in the range of 0.01–0.1 for AOTs, (1.5–15) ×1014molec.cm−2 for trace gas (NO2, HCHO) VCDs and (0.3–8)×1010molec.cm−3 for trace gas surface concentrations. These values compare to approximate average optical thicknesses of 0.3, trace gas vertical columns of 90×1014molec.cm−2 and trace gas surface concentrations of 11×1010molec.cm−3 observed over the campaign period. The discrepancies originate from differences in the applied techniques, the exact implementation of the algorithms and the user-defined settings that were not prescribed. For the comparison against supporting observations, the RMSDs increase to a range of 0.02–0.2 against AOTs from the Sun photometer, (11–55)×1014molec.cm−2 against trace gas VCDs from direct-sun DOAS observations and (0.8–9)×1010molec.cm−3 against surface concentrations from the long-path DOAS instrument. This increase in RMSDs is most likely caused by uncertainties in the supporting data, spatiotemporal mismatch among the observations and simplified assumptions particularly on aerosol optical properties made for the MAX-DOAS retrieval. As a side investigation, the comparison was repeated with the participants retrieving profiles from their own differential slant column densities (dSCDs) acquired during the campaign. In this case, the consistency among the participants degrades by about 30 % for AOTs, by 180 % (40 %) for HCHO (NO2) VCDs and by 90 % (20 %) for HCHO (NO2) surface concentrations. In former publications and also during this comparison study, it was found that MAX-DOAS vertically integrated aerosol extinction coefficient profiles systematically underestimate the AOT observed by the Sun photometer. For the first time, it is quantitatively shown that for optimal estimation algorithms this can be largely explained and compensated by considering biases arising from the reduced sensitivity of MAX-DOAS observations to higher altitudes and associated a priori assumptions.es
dc.description.peerreviewedPeerreviewes
dc.description.sponsorshipFunding for this study was provided by ESA through the CINDI-2 (ESA contract no. 4000118533/16/I-Sbo) and FRM4DOAS (ESA contract no. 4000118181/16/I-EF) projects and partly within the EU Seventh Framework Programme QA4ECV project (grant agreement no. 607405). The AIOFM group acknowledges the support by the NSFC under project no. 41530644. The participation of the University of Toronto team was supported by the Canadian Space Agency (through the AVATARS project) and the Natural Sciences and Engineering Research Council of Canada (through the PAHA project). The instrument was funded by the Canada Foundation for Innovation and is usually operated at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The activities of the IUP Heidelberg were supported by the DFG project RAPSODI (grant no. PL 193/17-1). INTA acknowledges support from the National funding projects HELADO (CTM2013-41311-P) and AVATAR (CGL2014-55230-R). CMA group acknowledges the support by the NSFC under project no. 41805027. The participation of the LMU team was made possible by the DFG Major Research Instrumentation Programme (INST 86/1499-1 FUGG). KLC has received funding from the Marie Curie Initial Training Network of the European Seventh Framework Programme (grant no. 607905) and the European Union's Horizon 2020 research and innovation programme (grant no. 654109). Support was received from ACTRIS-2 H2020 grant agreement no. 654109. The CINDI-2 campaign received funding from the Dutch Space Office (NSO).es
dc.identifier.citationAtmospheric Measurement Techniques 14: 1-35(2021)es
dc.identifier.doi10.5194/amt-14-1-2021
dc.identifier.e-issn1867-8548
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000844
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001809
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001659
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329
dc.identifier.otherhttps://amt.copernicus.org/articles/14/1/2021/
dc.identifier.urihttp://hdl.handle.net/20.500.12666/531
dc.language.isoenges
dc.publisherEuropean Geoscience Union (EGU)es
dc.relationinfo:eu-repo/grantAgreement/MINECO//CTM2013-41311-P/ES/HALOGENOS EN LA ATMOSFERA ANTARTICA Y SU IMPLICACION EN LA DISTRIBUCION DE OZONO/
dc.relationinfo:eu-repo/grantAgreement/MINECO//CGL2014-55230-R/ES/AVIACION Y ATMOSFERA: UN ESTUDIO AEROESPACIAL DE AEROSOLES Y GASES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/607405
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/654109
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© Author(s) 2021es
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMAX DOASes
dc.subjectCindi 2 campaignes
dc.titleIntercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaignes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
amt-14-1-2021.pdf
Tamaño:
13.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
amt-14-1-2021-supplement.pdf
Tamaño:
24.54 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones