Publicación:
Denoising Atmospheric Temperature Measurements Taken by the Mars Science Laboratory on the Martian Surface

dc.contributor.authorZurita, S.
dc.contributor.authorEscribano, F.
dc.contributor.authorSáez Landete, J.
dc.contributor.authorRodríguez Manfredi, J. A.
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.orcid0000-0002-3136-2720
dc.contributor.orcid0000-0002-7648-2734
dc.contributor.orcid0000-0002-9384-9745
dc.contributor.orcid0000-0003-0461-9815
dc.date.accessioned2022-02-09T09:18:28Z
dc.date.available2022-02-09T09:18:28Z
dc.date.issued2020-10-30
dc.description.abstractIn this article, we analyze data from two temperature sensors of the Mars Science Laboratory, which has been active in Mars since August 2012. Temperature measurements received from the rover are noisy and must be processed and validated before being delivered to the scientific community. Currently, a simple moving average (MA) filter is used to perform signal denoising. The application of this basic method relies on the assumption that the noise is stationary and statistically independent of the underlying structure of the signal, an arguable assumption in this kind of harsh environment. In this article, we analyze the application of two alternative methods to process the temperature sensor measurements: the discrete wavelet transform (DWT) and the Hilbert-Huang transform (HHT). We consider two different data sets: one belonging to the current Martian measurement campaigns, and the other to the thermal vacuum tests. The processing of these data sets allows to separate the random noise from the interference created by other systems. The experiments show that the MA filter may provide useful results under given circumstances. However, the proposed methods allow a better fitting for all the realistic scenarios while providing the possibility to identify and analyze other interesting signal features and artifacts that could be later studied and classified. The large amount of data to be processed makes computational efficiency an important requirement in this mission. Considering the computational cost and the filtering performance, we propose the method based on DWT as more suitable for this application.es
dc.description.peerreviewedPeerreviewes
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science, Innovation and Universities, under Project RTI2018-099825-B-C31.es
dc.identifier.citationIEEE Transactions on Instrumentation and Measurement 70(2): 9502910(2020)es
dc.identifier.doi10.1109/TIM.2020.3034986
dc.identifier.e-issn1557-9662
dc.identifier.issn0018-9456
dc.identifier.otherhttps://ieeexplore.ieee.org/document/9245514
dc.identifier.urihttp://hdl.handle.net/20.500.12666/485
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099825-B-C31
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseCopyright © 2021, IEEE
dc.subjectEmpirical Mode Decomposition (EMD)es
dc.subjectHilbert Huang Transform (HHT)es
dc.subjectMars Thermal Environmentes
dc.subjectSignal Denoisinges
dc.subjectWavelet Transformes
dc.titleDenoising Atmospheric Temperature Measurements Taken by the Mars Science Laboratory on the Martian Surfacees
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isProjectOfPublication933ed4d9-b03f-46e3-ba5b-e712c608289e
relation.isProjectOfPublication.latestForDiscovery933ed4d9-b03f-46e3-ba5b-e712c608289e

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acceso-restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones