Publicación:
Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models

dc.contributor.authorLennon, D. J.
dc.contributor.authorMaíz Apellániz, J.
dc.contributor.authorIrrgang, A.
dc.contributor.authorBohlin, R. C.
dc.contributor.authorDeustua, S.
dc.contributor.authorDufton, P. L.
dc.contributor.authorSimón Díaz, S.
dc.contributor.authorHerrero, A.
dc.contributor.authorCasares, J.
dc.contributor.authorMuñoz Darias, T.
dc.contributor.authorSmartt, S. J.
dc.contributor.authorDe Burgos, A.
dc.contributor.authorGonzález Hernández, Carmen
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.funderAgencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI)
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)
dc.contributor.funderDeutsche Forschungsgemeinschaft (DFG)
dc.contributor.funderNational Aeronautics and Space Administration (NASA)
dc.contributor.orcidLennon, D. J. [0000-0003-3063-4867]
dc.date.accessioned2022-02-11T10:47:20Z
dc.date.available2022-02-11T10:47:20Z
dc.date.issued2021-05-14
dc.descriptionFull Table 2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A167es
dc.description.abstractContext. LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum. Aims. Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum. Methods. The Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The Hubble data, together with the Gaia EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the Teff of the Bstr using the silicon ionization balance, and inferred Teff for the Be star from the fit to the SED. Results. The UV data strongly constrain the microturbulence velocity to ≲2 km s−1 for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the Hubble SED. For the B+BH single-star model, we find the parameters (Teff, log(L/L⊙), Mspec/M⊙) of the B-type star to be (15 300 ± 300 K, 3.23−0.10+0.09, 5.2−1.4+1.8). For the Bstr star we obtain (12 500 ± 100 K, 2.70−0.09+0.09, 0.8−0.3+0.5), and for the Be star (18 900 ± 200 K, 3.04−0.09+0.09, 3.4−1.8+3.5). While the Be+Bstr model is a better fit to the He I lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si IV resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass. Conclusions. We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the Teff and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21−8+9 M⊙.es
dc.description.peerreviewedPeerreviewes
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Innovation through grants PGC2018-091 3741-B-C22 and PGC2018095 049-B-C22, the European Regional Development Fund under grants AYA2017-83216-P, AYA2017-86389-P, ProID2017-01011-5 and the Canarian Agency for Research, Innovation and Information Society. TMD and JIGH acknowledge support via the Ramon y Cajal Fellowships RYC-2015-18148 and RYC-2013-14875 respectively. A.I. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) through grant HE1356/70-1. RB and SD acknowledge support from NASA through grant number O2064 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular those participating in the Gaia Multilateral Agreement.es
dc.identifier.citationAstronomy and Astrophysics 649: A167(2021)es
dc.identifier.doi10.1051/0004-6361/202040253
dc.identifier.e-issn1432-0746
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001659
dc.identifier.funderhttp://dx.doi.org/10.13039/100000104
dc.identifier.issn0004-6361
dc.identifier.otherhttps://www.aanda.org/articles/aa/abs/2021/05/aa40253-20/aa40253-20.html
dc.identifier.urihttp://hdl.handle.net/20.500.12666/520
dc.language.isoenges
dc.publisherEDP Scienceses
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095049-B-C22
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-0913741-B-C22
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AYA2017-83216-P/ES/BINARIAS DE RAYOS X: ACRECION, EYECCION Y MASAS DINAMICAS/
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AYA2017-86389-P/ES/ESPECTROSCOPIA DE ALTA RESOLUCION ORIENTADA AL ESTUDIO DE EXOTIERRAS Y LA FORMACION DE LA VIA LACTEA. EXPLOTACION CIENTIFICA DE ESPRESSO Y HORS/
dc.relationinfo:eu-repo/grantAgreement/MINECO//RYC-2015-18148
dc.relationinfo:eu-repo/grantAgreement/MINECO//RYC-2013-14875
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© ESO 2021
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectTechniques: spectroscopices
dc.subjectBinaries: spectroscopices
dc.subjectStars: black holeses
dc.subjectStars: early typees
dc.subjectStars: evolutiones
dc.subjectStars: fundamental parameterses
dc.titleHubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star modelses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication0b9267fd-b728-4b75-a31d-37d087f486f2
relation.isAuthorOfPublication.latestForDiscovery0b9267fd-b728-4b75-a31d-37d087f486f2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
aa40253-20.pdf
Tamaño:
1020.38 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones