Publicación:
Application of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitations

dc.contributor.authorPoyatos Martínez, D.
dc.contributor.authorDíaz García, Pedro
dc.contributor.authorGarcía Magariño, A.
dc.date.accessioned2025-07-07T10:54:58Z
dc.date.available2025-07-07T10:54:58Z
dc.date.issued2025-05-25
dc.description.abstractHypertrabeculation or left ventricular non-compaction (LVNC) is a cardiac condition that has recently been recognized. While several methods exist for accurately measuring the trabeculae in the ventricle, there is still no consensus within the medical community regarding the optimal approach. In previous work, we introduced DL-LVTQ, a tool based on a UNet convolutional neural network designed to quantify the trabeculae in the left ventricle. In this paper, we present an expanded dataset that includes new patients affected by a cardiomyopathy known as Titin, necessitating the retraining of the models involved in our study on this updated dataset to accurately infer future patients with this condition. We also introduce ViTUNet, a hybrid architecture that aims to merge the benefits of UNet and Vision Transformers for precise segmentation of the left ventricle. Furthermore, we train a YOLOv8 model to detect the left ventricle and integrate it with the hybrid model to focus segmentation on a region of interest around the ventricle. Regarding the precision quality achieved by ViTUNet using YOLOv8, results are quite similar to those obtained by the DL-LVTQ tool, suggesting that the dataset is a limiting factor in our improvement. To substantiate this, we conduct a detailed analysis of the MRI slices in the current dataset. By identifying and removing problematic slices, results significantly improve. The introduction of a YOLOv8 model alongside a deep learning model presents a promising approach.
dc.identifier.citationPractical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 132–142
dc.identifier.doi10.1007/978-3-031-87873-2_14
dc.identifier.isbn978-3-031-87872-5
dc.identifier.otherhttps://link.springer.com/chapter/10.1007/978-3-031-87873-2_14
dc.identifier.urihttps://inta.metricsalad.com/handle/123456789/1437
dc.language.isoeng
dc.publisherSpringer
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.license© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.subjectLeft ventricular non-compaction diagnosis
dc.subjectTransformers
dc.subjectUNet
dc.subjectMRI Image segmentation
dc.subjectVision
dc.subjectData analysis
dc.subjectYOLOv8
dc.titleApplication of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitations
dc.typeinfo:eu-repo/semantics/book
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dspace.entity.typePublication
relation.isAuthorOfPublication32aac86b-1ad7-47b1-8b24-29f4b939901b
relation.isAuthorOfPublication95743c69-713a-41a7-915b-ef7db048f561
relation.isAuthorOfPublication.latestForDiscovery32aac86b-1ad7-47b1-8b24-29f4b939901b

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acceso-restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: