Proyecto de Investigación:
PARTICIPACION DEL CENTRO DE ASTROBIOLOGIA (CAB, CSIC

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

AYA2017-85170-R

Autores

Publicaciones

PublicaciónAcceso Abierto
MUSE view of Arp220: Kpc-scale multi-phase outflow and evidence for positive feedback
(EDP Sciences, 2020-11-17) Perna, M.; Arribas, S.; Catalán Torrecilla, C.; Colina, L.; Bellocchi, E.; Fluetsch, A.; Maiolino, R.; Cazzoli, S.; Hernán Caballero, A.; Pereira Santaella, M.; Piqueras López, J.; Rodríguez del Pino, B.; Ministerio de Economía y Competitividad (MINECO); ESO Multi Unit Spectroscopic Explorer (MUSE); Comunidad de Madrid; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Perna, M. [0000-0002-0362-5941]; Arribas, S. [0000-0001-7997-1640]; Colina, L. [0000-0002-9090-4227]; Bellocchi, E. [0000-0001-9791-4228]; Cazzoli, S. [0000-0002-7705-2525]; Pereira Santaella, M. [0000-0002-4005-9619]; Piqueras López, J. [0000-0003-1580-1188]; Rodríguez del Pino, B. [0000-0001-5171-3930]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
Context. Arp220 is the nearest and prototypical ultra-luminous infrared galaxy; it shows evidence of pc-scale molecular outflows in its nuclear regions and strongly perturbed ionised gas kinematics on kpc scales. It is therefore an ideal system for investigating outflow mechanisms and feedback phenomena in detail. Aims. We investigate the feedback effects on the Arp220 interstellar medium (ISM), deriving a detailed picture of the atomic gas in terms of physical and kinematic properties, with a spatial resolution that had never before been obtained (0.56″, i.e. ∼210 pc). Methods. We use optical integral-field spectroscopic observations from VLT/MUSE-AO to obtain spatially resolved stellar and gas kinematics, for both ionised ([N II]λ6583) and neutral (Na IDλλ5891, 96) components; we also derive dust attenuation, electron density, ionisation conditions, and hydrogen column density maps to characterise the ISM properties. Results. Arp220 kinematics reveal the presence of a disturbed kpc-scale disc in the innermost nuclear regions as well as highly perturbed multi-phase (neutral and ionised) gas along the minor axis of the disc, which we interpret as a galactic-scale outflow emerging from the Arp220 eastern nucleus. This outflow involves velocities up to ∼1000 km s−1 at galactocentric distances of ≈5 kpc; it has a mass rate of ∼50 M⊙ yr−1 and kinetic and momentum power of ∼1043 erg s−1 and ∼1035 dyne, respectively. The inferred energetics do not allow us to distinguish the origin of the outflows, namely whether they are active galactic nucleus- or starburst-driven. We also present evidence for enhanced star formation at the edges of – and within – the outflow, with a star-formation rate SFR ∼ 5 M⊙ yr−1 (i.e. ∼2% of the total SFR). Conclusions. Our findings suggest the presence of powerful winds in Arp220: They might be capable of heating or removing large amounts of gas from the host (“negative feedback”) but could also be responsible for triggering star formation (“positive feedback”).
PublicaciónAcceso Abierto
Extreme gas kinematics in an off-nuclear HII region of SDSS J143245.98+404300.3
(EDP Sciences, 2019-10-03) Rodríguez del Pino, B.; Arribas, S.; Piqueras López, J.; Crespo Gómez, A.; Vílchez, J. M.; Ministerio de Economía y Competitividad (MINECO); University of Utah; Alfred P. Sloan Foundation (APSF); Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We present and discuss the properties of an ionized gas component with extreme kinematics in a recently reported off-nuclear HII region located at ∼0.8−1.0 kpc from the nucleus of SDSS J143245.98+404300.3. The high-velocity-gas component is identified by the detection of very broad emission wings in the Hα line, with full width at half maximum (FWHM)  ≥ 850−1000 km s−1. Such gas kinematics are outstandingly high compared to other HII regions in local galaxies and are similar to those reported in some star-forming clumps of galaxies at z ∼ 2. The spatially resolved analysis indicates that the high-velocity gas extends at least ∼90 pc and it could be compatible with an ionized outflow entraining gas at a rate between approximately seven and nine times faster than the rate at which gas is being converted into stars. We do not detect broad emission wings in other emission lines such as Hβ, perhaps due to moderate dust extinction, nor in [N II]λλ6548, 6584 or [S II]λλ6717, 6731, which could be due to the presence of turbulent mixing layers originated by the impact of fast-flowing winds. The lack of spectral signatures associated to the presence of Wolf–Rayet stars points towards stellar winds from a large number of massive stars and/or supernovae as the likely mechanisms driving the high-velocity gas.
PublicaciónAcceso Abierto
The host galaxies of luminous type 2 AGNs at z ∼ 0.3–0.4
(Oxford Academics: Oxford University Press, 2019-02-28) Urbano Mayorgas, J. J.; Villar Martín, M.; Buitrago, F.; Piqueras López, J.; Rodríguez del Pino, B.; Koekemoer, A. M.; Huertas Company, M.; Domínguez Tenreiro, R.; Carrera, F. J.; Tadhunter, C.; Fundação para a Ciência e a Tecnologia (FCT); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Buitrago, F. [0000-0002-2861-9812]; Koekemoer, A. M. [0000-0002-6610-2048]
We study the morphological and structural properties of the host galaxies associated with 57 optically selected luminous type 2 active galactic nuclei (AGNs) at z ∼ 0.3–0.4: 16 high-luminosity Seyfert 2 [HLSy2, 8.0 ≤ log(⁠L[OIII]/L⊙)< 8.3] and 41 obscured [QSO2, log(⁠L[OIII]/L⊙)≥ 8.3] quasars. With this work, the total number of QSO2s at z < 1 with parametrized galaxies increases from ∼35 to 76. Our analysis is based on Hubble Space Telescope WFPC2 and ACS images that we fit with GALFIT. HLSy2s and QSO2s show a wide diversity of galaxy hosts. The main difference lies in the higher incidence of highly disturbed systems among QSO2s. This is consistent with a scenario in which galaxy interactions are the dominant mechanism triggering nuclear activity at the highest AGN power. There is a strong dependence of galaxy properties with AGN power (assuming L[OIII] is an adequate proxy). The relative contribution of the spheroidal component to the total galaxy light (B/T) increases with L[OIII]⁠. While systems dominated by the spheroidal component spread across the total range of L[OIII]⁠, most disc-dominated galaxies concentrate at log(⁠L[OIII]/L⊙)<8.6. This is expected if more powerful AGNs are powered by more massive black holes which are hosted by more massive bulges or spheroids. The average galaxy sizes (〈re〉) are 5.0 ± 1.5 kpc for HLSy2s and 3.9 ± 0.6 kpc for HLSy2s and QSO2s, respectively. These are significantly smaller than those found for QSO1s and narrow-line radio galaxies at similar z⁠. We put the results of our work in the context of related studies of AGNs with quasar-like luminosities.
PublicaciónAcceso Abierto
Physics of ULIRGs with MUSE and ALMA: The PUMA project I. Properties of the survey and first MUSE data results
(EDP Sciences, 2021-02-16) Perna, M.; Arribas, S.; Pereira Santaella, M.; Colina, L.; Bellocchi, E.; Catalán Torrecilla, C.; Cazzoli, S.; Crespo Gómez, A.; Maiolino, R.; Piqueras López, J.; Rodríguez del Pino, B.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Science and Technology Facilities Council (STFC); Perna, M. [0000-0002-0362-5941]; Arribas, S. [0000-0001-7997-1640]; Colina, L. [0000-0002-9090-4227]; Bellocchi, E. [0000-0001-9791-4228]; Catalán Torrecilla, C. [0000-0002-8067-0164]; Cazzoli, S. [0000-0002-7705-2525]; Maiolino, R. [0000-0002-4985-3819]; Piqueras López, J. [0000-0003-1580-1188]; Rodríguez del Pino, B. [0000-0001-5171-3930]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
Context. Ultraluminous infrared galaxies (ULIRGs) are characterised by extreme starburst (SB) and active galactic nucleus (AGN) activity, and are therefore ideal laboratories for studying the outflow phenomena and their feedback effects. We have recently started a project called Physics of ULIRGs with MUSE and ALMA (PUMA), which is a survey of 25 nearby (z < 0.165) ULIRGs observed with the integral field spectrograph MUSE and the interferometer ALMA. This sample includes systems with both AGN and SB nuclear activity in the pre- and post-coalescence phases of major mergers. Aims. The main goals of the project are (i) to study the prevalence of (ionised, neutral, and molecular) outflows as a function of the galaxy properties, (ii) to constrain the driving mechanisms of the outflows (e.g. distinguish between SB and AGN winds), and (iii) to identify and characterise feedback effects on the host galaxy. In this first paper, we present details on the sample selection, MUSE observations, and data reduction, and derive first high-level data products. Methods. MUSE data cubes were analysed to study the dynamical status of each of the 21 ULIRGs observed so far, taking the stellar kinematics and the morphological properties inferred from MUSE narrow-band images into account. We also located the ULIRG nuclei, taking advantage of near-infrared (HST) and millimeter (ALMA) data, and studied their optical spectra to infer (i) the ionisation state through standard optical line ratio diagnostics, and (ii) outflows in both atomic ionised ([O III], Hα) and neutral (Na ID) gas. Results. We show that the morphological and stellar kinematic classifications are consistent: post-coalescence systems are more likely associated with ordered motions, while interacting (binary) systems are dominated by non-ordered and streaming motions. We also find broad and asymmetric [O III] and Na ID profiles in almost all nuclear spectra, with line widths in the range [300 − 2000] km s−1, possibly associated with AGN- and SB-driven winds. This result reinforces previous findings that indicated that outflows are ubiquitous during the pre- and post-coalescence phases of major mergers.
PublicaciónAcceso Abierto
Stellar kinematics in the nuclear regions of nearby LIRGs with VLT-SINFONI Comparison with gas phases and implications for dynamical mass estimations
(EDP Sciences, 2021-06-22) Crespo Gómez, A.; Piqueras López, J.; Arribas, S.; Pereira Santaella, M.; Colina, L.; Rodríguez del Pino, B.; National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); 0000-0003-2119-277X; 0000-0003-1580-1188; 0000-0001-7997-1640; 0000-0002-9090-4227; 0000-0001-5171-3930
Context. Nearby luminous infrared galaxies (LIRGs) are often considered to be the local counterpart of the star forming galaxy (SFG) population at z > 1. Therefore, local LIRGs are ideal systems with which to perform spatially resolved studies on the physical processes that govern these objects and to validate assumptions made in high-z studies because of a lack of sensitivity and/or spatial resolution. Aims. In this work we analyse the spatially resolved kinematics of the stellar component in the inner r < 1–2 kpc of ten nearby (mean z = 0.014) LIRGs, establishing the dynamical state of the stars and estimating their dynamical masses (Mdyn). We compare the stellar kinematics with those for different gas phases, and analyse the relative effects of using different tracers when estimating dynamical masses. Methods. We use seeing-limited SINFONI H- and K-band spectroscopy in combination with ancillary infrared (IR) imaging from various instruments (NICMOS/F160W, NACO/Ks and IRAC/3.6 μm). The stellar kinematics are extracted in both near-IR bands by fitting the continuum emission using pPXF. The velocity maps are then modelled as rotating discs and used to extract the geometrical parameters (i.e. centre, PA, and inclination), which are compared with their photometric counterparts extracted from the near-IR images. We use the stellar and the previously extracted gas velocity and velocity dispersion maps to estimate the dynamical mass using the different tracers. Results. We find that the different gas phases have similar kinematics, whereas the stellar component is rotating with slightly lower velocities (i.e. V* ∼ 0.8Vg) but in significantly warmer orbits (i.e. σ* ∼ 2σg) than the gas phases, resulting in significantly lower V/σ for the stars (i.e. ∼1.5–2) than for the gas (i.e. ∼4–6). These ratios can be understood if the stars are rotating in thick discs while the gas phases are confined in dynamically cooler (i.e. thinner) rotating discs. However, these differences do not lead to significant discrepancies between the dynamical mass estimations based on the stellar and gas kinematics. This result suggests that the gas kinematics can be used to estimate Mdyn also in z ∼ 2 SFGs, a galaxy population that shares many structural and kinematic properties with local LIRGs.

Unidades organizativas

Descripción

Palabras clave