Proyecto de Investigación: PGC2018-098915-B-C21
Cargando...
Colaboradores
Financiadores
ID
PGC2018-098915-B-C21
Autores
Publicaciones
Radio observations of massive stars in the Galactic centre: The Arches Cluster⋆
(EDP Sciences, 2021-03-17) Gallego Calvente, A. T.; Schödel, R.; Alberdi, A.; Herrero Illana, R.; Najarro, F.; Yusef Zadeh, F.; Dong, H.; Sánchez Bermudez, J.; Shahzamanian, B.; Nogueras Lara, F.; Gallego Cano, E.; Deutsche Forschungsgemeinschaft (DFG); European Commssion (EC); Agencia Estatal de Investigación (AEI); 0000-0002-6428-8045; 0000-0001-5404-797X; 0000-0002-9371-1033; 0000-0001-6437-6806; 0000-0002-6379-7593; 0000-0002-7452-1496; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We present high-angular-resolution radio observations of the Arches cluster in the Galactic centre, one of the most massive young clusters in the Milky Way. The data were acquired in two epochs and at 6 and 10 GHz with the Karl G. Jansky Very Large Array. The rms noise reached is three to four times better than during previous observations and we have almost doubled the number of known radio stars in the cluster. Nine of them have spectral indices consistent with thermal emission from ionised stellar winds, one is a confirmed colliding wind binary, and two sources are ambiguous cases. Regarding variability, the radio emission appears to be stable on timescales of a few to ten years. Finally, we show that the number of radio stars can be used as a tool for constraining the age and/or mass of a cluster and also its mass function.
Star formation and nuclear activity in luminous infrared galaxies: an infrared through radio review
(Springer Link, 2021-01-13) Pérez Torres, M.; Mattila, S.; Alonso Herrero, A.; Aalto, S.; Efstathiou, A.; European Commission (EC); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Pérez Torres, 0000-0001-5654-0266; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Nearby galaxies offer unique laboratories allowing multi-wavelength spatially resolved studies of the interstellar medium, star formation and nuclear activity across a broad range of physical conditions. In particular, detailed studies of individual local luminous infrared galaxies (LIRGs) are crucial for gaining a better understanding of these processes and for developing and testing models that are used to explain statistical studies of large populations of such galaxies at high redshift for which it is currently impossible to reach a sufficient physical resolution. Here, we provide an overview of the impact of spatially resolved infrared, sub-millimetre and radio observations in the study of the interstellar medium, star formation and active galactic nuclei as well as their interplay in local LIRGs. We also present an overview of the modelling of their spectral energy distributions using state-of-the-art radiative transfer codes. These contribute necessary and powerful ‘workhorse’ tools for the study of LIRGs (and their more luminous counterparts) at higher redshifts which are unresolved in observations. We describe how spatially-resolved time-domain observations have recently opened a new window to study the nuclear activity in LIRGs. We describe in detail the observational characteristics of Arp 299 which is one of the best studied local LIRGs and exemplifies the power of the combination of time-domain and high-resolution observations at infrared to radio wavelengths together with radiative transfer modelling used to explain the spectral energy distributions of its different components. We summarise the previous achievements obtained using high-spatial resolution observations and provide an outlook into what we can expect to achieve with future facilities.