Proyecto de Investigación: FOUR ACES 724427
Cargando...
Colaboradores
Financiadores
ID
724427
Autores
Publicaciones
Transmission Spectroscopy of WASP-79b from 0.6 to 5.0 μm
(The Institute of Physics (IOP), 2020-01-10) Sotzen, K. S.; Stevenson, K. B.; Sing, D. K.; Kilpatrick, B. M.; Wakeford, H. R.; Filippazzo, J. C.; Lewis, N. K.; Hörst, S. M.; López Morales, M.; Henry, G. W.; Buchhave, L. A.; Ehrenreich, D.; Fraine, J. D.; García Muñoz, Antonio; Jayaraman, R.; Lavvas, P.; Des Etangs, A. L.; Marley, M. S.; Nikolov, N.; Rathcke, A. D.; Sánz Forcada, J.; European Research Council (ERC); National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); 0000-0001-7393-2368; 0000-0002-7352-7941; 0000-0001-6050-7645; 0000-0003-4220-600X; 0000-0003-4328-3867; 0000-0002-0201-8306; 0000-0002-8507-1304; 0000-0003-4596-0702; 0000-0003-4155-8513; 0000-0003-1605-5666; 0000-0001-9704-5405; 0000-0003-1756-4825; 0000-0002-5360-3660; 0000-0002-5251-2943; 0000-0002-6500-3574; 0000-0002-1600-7835
As part of the Panchromatic Exoplanet Treasury program, we have conducted a spectroscopic study of WASP-79b, an inflated hot Jupiter orbiting an F-type star in Eridanus with a period of 3.66 days. Building on the original WASP and TRAPPIST photometry of Smalley et al., we examine Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) (1.125–1.650 μm), Magellan/Low Dispersion Survey Spectrograph (LDSS)-3C (0.6–1 μm) data, and Spitzer data (3.6 and 4.5 μm). Using data from all three instruments, we constrain the water abundance to be −2.20 ≤ log(H2O) ≤ −1.55. We present these results along with the results of an atmospheric retrieval analysis, which favor inclusion of FeH and H− in the atmospheric model. We also provide an updated ephemeris based on the Smalley, HST/WFC3, LDSS-3C, Spitzer, and Transiting Exoplanet Survey Satellite (TESS) transit times. With the detectable water feature and its occupation of the clear/cloudy transition region of the temperature/gravity phase space, WASP-79b is a target of interest for the approved James Webb Space Telescope (JWST) Director's Discretionary Early Release Science (ERS) program, with ERS observations planned to be the first to execute in Cycle 1. Transiting exoplanets have been approved for 78.1 hr of data collection, and with the delay in the JWST launch, WASP-79b is now a target for the Panchromatic Transmission program. This program will observe WASP-79b for 42 hr in four different instrument modes, providing substantially more data by which to investigate this hot Jupiter.
A precise architecture characterization of the π Mensae planetary system
(EDP Sciences, 2020-10-01) Damasso, D.; Sozzetti, A; Lovis, C.; Barros, S. C. C.; Sousa, S. G.; Demangeon, O. D. S.; Faria, J. P.; Lillo Box, J.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Zapatero Osorio, M. R.; Amate, M.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Borsa, F.; Bossini, D.; Bourrier, V.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Dekker, H.; Delabre, B.; Di Marcoantonio, P.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lo Curto, G.; Maire, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Riva, M.; Santa Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Agenzia Spaziale Italiana (ASI); Fundação para a Ciência e a Tecnologia (FCT); Australian Research Council (ARC); Istituto Nazionale Astrofisica (INAF); 0000-0003-0987-1593; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. The bright star pi Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M-circle plus planet at similar to 0.07 au and a sub-stellar companion on a similar to 2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization.
Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of pi Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign.
Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters.
Results. We present a precise characterization of the planetary system around pi Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s(-1)) allow for a precise retrieval of the Doppler signal induced by pi Men c. The residuals show a root mean square of 1.2 m s(-1), which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than similar to 2 M-circle plus within the orbit of pi Men c). We improve the ephemeris of pi Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of pi Men b with high precision (i(b) =45.8(-1.1)(+1.4) deg). This leads to precise measurement of its absolute mass m(b) = =14.1(-0.4)(+0.5) M-Jup, indicating that pi Men b can be classified as a brown dwarf.
Conclusions. The pi Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the pi Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of pi Men b contributes to make the brown dwarf desert a bit greener.
The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab
(The Institute of Physics (IOP), 2020-07-02) Alam, M. K.; López Morales, M.; Nikolov, N.; Sing, D. K.; Henry, G. W.; Baxter, C.; Désert, J. M.; Barstow, J. K.; Mikal Evans, T.; Bourrier, V.; Lavvas, P.; Wakeford, H. R.; Williamson, M. H.; Sanz Forcada, J.; Buchhave, L. A.; Cohen, O.; García Muñoz, Antonio; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Alam, M. K. [0000-0003-4157-832X]; López Morales, M. [0000-0003-3204-8183]; Nikolov, N. [0000-0002-6500-3574]; Sing, D. K. [0000-0001-6050-7645]; Henry, G. W. [0000-0003-4155-8513]; Baxter, C. [0000-0003-3438-843X]; Désert, J. M. [0000-0002-0875-8401]; Barstow, J. K. [0000-0003-3726-5419]; Mikal Evans, T. [0000-0001-5442-1300]; Bourrier, V. [0000-0002-9148-034X]; Lavvas, P. [0000-0002-5360-3660]; Wakeford, H. R. [0000-0003-4328-3867]; Forcada, J. S. [0000-0002-1600-7835]; Buchhave, L. A. [0000-0003-1605-5666]; Cohen, O. [0000-0003-3721-0215]; García Muñoz, A. [0000-0003-1756-4825]
We present a 0.3−5 μm transmission spectrum of the hot Jupiter HAT-P-32Ab observed with the Space Telescope Imaging Spectrograph and Wide Field Camera 3 instruments mounted on the Hubble Space Telescope, combined with Spitzer Infrared Array Camera photometry. The spectrum is composed of 51 spectrophotometric bins with widths ranging between 150 and 400 Å, measured to a median precision of 215 ppm. Comparisons of the observed transmission spectrum to a grid of 1D radiative-convective equilibrium models indicate the presence of clouds/hazes, consistent with previous transit observations and secondary eclipse measurements. To provide more robust constraints on the planet's atmospheric properties, we perform the first full optical to infrared retrieval analysis for this planet. The retrieved spectrum is consistent with a limb temperature of ${1248}_{-92}^{+92}$ K, a thick cloud deck, enhanced Rayleigh scattering, and ~10× solar H2O abundance. We find log(Z/Z⊙) = ${2.41}_{-0.07}^{+0.06}$, and compare this measurement with the mass–metallicity relation derived for the solar system.
ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107−5240.
(EDP Sciences, 2020-01-22) Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert, Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova, R.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe, F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Zapatero Osorio, M. R.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); European Research Council (ERC); Molaro, P. [0000-0002-0571-4163]; Monaco, L. [0000-0002-3148-9836]; Nunes, N. J. [0000-0002-3837-6914]; Suarez Mascareño, A. [0000-0002-3814-5323]; Aguado, D. [0000-0001-5200-3973]; González Hernández, J. I. [0000-0002-0264-7356]; Adibekyan, V. [0000-0002-0601-6199]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Figueira, P. [0000-0001-8504-283X]; Sozzetti, A. [0000-0002-7504-365X]; Santos, N. [0000-0003-4422-2919]; Cupani, G. [0000-0002-6830-9093]; Martins, C. J. A. P. [0000-0002-4886-9261]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. The vast majority of the known stars of ultra low metallicity ([Fe/H] < −4.5) are known to be enhanced in carbon, and belong to the “low-carbon band” (A(C) = log(C/H)+12 ≤ 7.6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metal-poor star discovered, HE 0107−5240, is also enhanced in carbon and belongs to the “low-carbon band”. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer from a former AGB companion. Theoretically, low-mass ratios in binary systems are much more favoured amongst Pop III stars than they are amongst solar-metallicity stars. Any constraint on the mass ratio of a system of such low metallicity would shed light on the star formation mechanisms in this metallicity regime.
Aims. We acquired one high precision spectrum with ESPRESSO in order to check the reality of the radial velocity variations. In addition we analysed all the spectra of this star in the ESO archive obtained with UVES to have a set of homogenously measured radial velocities.
Methods. The radial velocities were measured using cross correlation against a synthetic spectrum template. Due to the weakness of metallic lines in this star, the signal comes only from the CH molecular lines of the G-band.
Results. The measurement obtained in 2018 from an ESPRESSO spectrum demonstrates unambiguously that the radial velocity of HE 0107−5240 has increased from 2001 to 2018. Closer inspection of the measurements based on UVES spectra in the interval 2001–2006 show that there is a 96% probability that the radial velocity correlates with time, hence the radial velocity variations can already be suspected from the UVES spectra alone.
Conclusions. We confirm the earlier claims of radial velocity variations in HE 0107−5240. The simplest explanation of such variations is that the star is indeed in a binary system with a long period. The nature of the companion is unconstrained and we consider it is equally probable that it is an unevolved companion or a white dwarf. Continued monitoring of the radial velocities of this star is strongly encouraged.
The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS
(EDP Sciences, 2020-11-09) Lendl, M.; Csizmadia, Sz.; Deline, A.; Fossati, L.; Kitzmann, D.; Heng, K.; Hoyer, S.; Salmon, S.; Benz, W.; Broeg, C.; Ehrenreich, D.; Malvasio, L.; Marafatto, L.; Michaelis, H.; Munari, M.; Nascimbeni, V.; Olofsson, G.; Ottacher, H.; Ottensamer, R.; Pagano, I.; Pallé, E.; Peter, G.; Pizza, D.; Piotto, G.; Pollacco, D.; Ratti, F.; Rauer, H.; Ragazzoni, R.; Rando, N.; Ribas, I.; Rieder, M.; Rohlfs, R.; Safa, F.; Santos, N. C.; Scandariato, G.; Ségransan, D.; Simón, A. E.; Singh, V.; Smith, A. M. S.; Sordet, Michael; Sousa, S. G.; Steller, M.; Szabó, Gy. M.; Thomas, N.; Tschentscher, M.; Udry, S.; Viotto, V.; Walter, I.; Walton, N. A.; Wildi, F.; Wolter, D.; Fortier, A.; Queloz, D.; Bonfanti, A.; Brandeker, A.; Collier Cameron, A.; Delrez, L.; García Muñoz, Antonio; Hooton, M. J.; Maxted, P. F. L.; Morris, B. M.; Van Grootel, V.; Wilson, T. G.; Alibert, Y.; Alonso, R.; Asquier, J.; Bandy, T.; Bárczy, T.; Barrado, D.; Barros, S. C. C.; Baumjohann, W.; Beck, M.; Beck, T.; Bekkelien, A.; Bergomi, M.; Billot, N.; Biondi, F.; Bonfils, X.; Bourrier, V.; Busch, M. D.; Cabrera, J.; Cessa, V.; Charnoz, S.; Chazelas, B.; Corral Van Damme, C.; Davies, M. B.; Deleuil, M.; Demangeon, O. D. S.; Demory, B. O.; Erikson, A.; Farinato, J.; Fridlund, M.; Futyan, D.; Gandolfi, D.; Gillon, M.; Guterman, P.; Hasiba, J.; Hernández, E.; Isaak, K. G.; Kiss, L.; Kuntzer, T.; Lecavelier des Etangs, A.; Lüftinger, T.; Laskar, J.; Lovis, C.; Magrin, D.; Austrian Research Promotion Agency (FFG); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Swiss National Science Foundation (SNSF); Agencia Estatal de Investigación (AEI); Fundação para a Ciência e a Tecnologia (FCT); National Research Development and Innovation Office, Hungarian (NKFIH); Agenzia Spaziale Italiana (ASI); Generalitat de Catalunya; European Space Agency (ESA); Fundacao para a Ciencia e a Tecnologia (FCT); Belgian Federal Science Policy Office (BELSPO); Istituto Nazionale di Astrofisica (INAF); Wilson, T. G. [0000-0001-8749-1962]; Cameron, A. [0000-0002-8863-7828]; Fridlund, M. [0000-0002-0855-8426]; Cabrera, J. [0000-0001-6653-5487]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Piotto, G. [0000-0002-9937-6387]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4−4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.