Proyecto de Investigación:
ESP2017-87690-C3-1-R

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

ESP2017-87690-C3-1-R

Autores

Publicaciones

PublicaciónRestringido
Evaluation of multivariate analyses and data fusion between Raman and laser‐induced breakdown spectroscopy in binary mixtures and its potential for solar system exploration
(Wiley Online Library, 2020-01-19) Manrique, J. A.; López Reyes, G.; Álvarez Pérez, A.; Bozic, T.; Veneranda, M.; Sanz Arranz, A.; Saiz, J.; Medina García, J.; Rull, F.; Ministerio de Economia y Competitividad (MINECO); Agencia Estatal de Investigación (AEI)
Raman and laser‐induced breakdown spectroscopy (LIBS) spectroscopies will play an important role in planetary exploration missions in the following years, not only with Raman instruments like Raman laser spectrometer on board of Rosalid Franklin Rover or scanning habitable environments with Raman and luminescence for organics and chemicals on board Mars2020 Rover but also with combined instruments such as SuperCam. These techniques will be part of the upcoming planetary exploration missions because they can provide complementary information from the analysed sample while potentially sharing hardware components, maximizing the scientific return of the samples while limiting mass. In this framework, this study seeks to test the feasibility of combining several univariate and multivariate analysis techniques with data fusion techniques of different instruments (532 and 785 nm Raman and LIBS) to evaluate the improvements in the quantitative classification of samples in binary mixtures. We prepared two‐component mixtures that are potentially relevant in planetary exploration missions, using two different sulfates and a chloride. A more accurate classification of the samples is possible through a univariate analysis that combines the calculated concentration indicators for Raman and LIBS. On the other hand, multivariate analysis was run on Raman, LIBS, and Raman + LIBS low‐level fused data sets. The results showed a better improvement when fusing LIBS and Raman when compared with the redundant fusion but not a systematic improvement when compared with individual sets. We demonstrate that a quantification of the mineral abundances in binary mixtures can be obtained from Raman and LIBS data using univariate and multivariate analysis techniques, being the latter remarkably better, moving from performances of classification, in the whole range of concentrations, that could be over the 10% to values under 3.5%. Furthermore, the fusion of data coming from these techniques improves the classification limit with respect to the individual techniques. Thus, besides the (evident) hardware convenience of combining LIBS with 532‐nm Raman, there could be analytical advantages as well.
PublicaciónRestringido
Raman characterization of terrestrial analogs from the AMADEE‐18 astronaut simulated mission using the ExoMars RLS simulator: Implications for Mars
(Wiley Analytical Science, 2020-11-09) Lalla, E.; Konstantinidis, M.; López Reyes, G.; Daly, M. G.; Veneranda, M.; Manrique, J. A.; Groemer, G.; Vago, J. L.; Rull, F.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Veneranda, M. [0000-0002-7185-2791]; Daly, M. [0000-0002-3733-2530]; Lalla, E. A. [0000-0002-0005-1006]; Konstantinidis, M. [0000-0002-5074-9023]; Manrique, J. A. [0000-0002-2053-2819]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Between February 1 and February 28, 2018, the Austrian Space Forum, in cooperation with research teams from 25 nations, conducted the AMADEE‐18 mission—a human‐robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. As a part of the AMADEE‐18 simulated Mars human exploration mission, the Remote Science Support team investigated the Dhofar area (Oman) to qualify it as a potential Mars analog site. The motivation of this research was to study and register selected samples collected by the analog astronauts during the AMADEE‐18 mission with the European Space Agency (ESA) ExoMars Raman Laser Spectrometer (RLS) simulator, compare the results with standard laboratory measurements, and establish the implication of the results to the future ESA ExoMars mission. The Raman measurements identified minerals such as carbonates (calcite and dolomite), feldspar and plagioclase (albite, anorthite, orthoclase, and sanidine), Fe‐oxides (goethite, hematite, and magnetite), and Ti‐oxide (anatase), each relevant to planetary exploration. As we have presented here, Raman spectroscopy is a powerful tool for detecting the presence of organic molecules, particularly by analyzing the principal vibration of CC and CH bonds. It has also been shown that portable Raman spectroscopy is a relevant tool for in situ field studies such as those conducted during extra‐vehicular activities (EVA) in simulated missions like the AMADEE‐18 and the future AMADEE‐2020 campaign.
PublicaciónAcceso Abierto
ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman Laser Spectrometer
(Nature Research Journals, 2021-01-14) Veneranda, M.; López Reyes, G.; Saiz, J.; Manrique, J. A.; Sanz Arranz, A.; Medina, J.; Moral, A.; Seoane, L.; Ibarmia, S.; Rull, F.; European Research Council (ERC); Agencia Estatal de Investigación (AEI)
In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system). The results were later complemented in the laboratory using a bench top RLS operation simulator and a X-Ray diffractometer (XRD). By simulating the operational and analytical constraints of the ExoMars mission, the two RLS representative instruments effectively disclosed the mineralogical composition of the drilled cores (k-feldspar, plagioclase, quartz, muscovite and rutile as main components), reaching the detection of minor phases (e.g., additional phyllosilicate and calcite) whose concentration was below the detection limit of XRD. Furthermore, Raman systems detected many organic functional groups (–C≡N, –NH2 and C–(NO2)), suggesting the presence of nitrogen-fixing microorganisms in the samples. The Raman detection of organic material in the subsurface of a Martian analogue site presenting representative environmental conditions (high UV radiation, extreme aridity), supports the idea that the RLS could play a key role in the fulfilment of the ExoMars main mission objective: to search for signs of life on Mars.
PublicaciónAcceso Abierto
SuperCam Calibration Targets: Design and Development
(Springer Link, 2020-11-26) Manrique, J. A.; López Reyes, G.; Cousin, A.; Rull, F.; Maurice, S.; Wiens, R. C.; Madariaga, M. B.; Gasnault, O.; Aramendia, J.; Arana, G.; Beck, P.; Bernard, S.; Bernardi, P.; Bernt, M. H.; Berrocal, A.; Beyssac, O.; Caïs, P.; Castro, K.; Clegg, S. M.; Cloutis, E.; Dromart, G.; Drouet, C.; Dubois, B.; Escribano, D.; Fabre, C.; Fernández, A.; Forni, O.; García Baonza, V.; Gontijo, I.; Johnson, J. R.; Laserna, J.; Lasue, J.; Madsen, S.; Mateo Martí, Eva; Medina, J.; Meslin, P.; Montagnac, G.; Moros, J.; Ollila, A. M.; Ortega, C.; Prieto Ballesteros, O.; Reess, J. M.; Robinson, S.; Rodríguez, Joseph; Saiz, J.; Sanz Arranz, J. A.; Sard, I.; Sautter, V.; Sobron, P.; Toplis, M.; Veneranda, M.; Agencia Estatal de Investigación (AEI)
SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.
PublicaciónRestringido
Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover
(Wiley Analytical Science, 2020-01-23) López Reyes, G.; Pilorget, C.; Moral, A.; Manrique, J. A.; Berrocal, A.; Veneranda, M.; Rull, F.; Medina, J.; Hamm, V.; Bibring, J. P.; Rodríguez, J. A.; Pérez Canora, C.; Mateo Martí, Eva; Prieto Ballesteros, O.; Lalla, E.; Vago, J. L.; Sanz de la Rosa, Andrea; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Manrique, J. A. [0000-0002-2053-2819]; Moral, A. G. [0000-0002-6190-8560]; Venerada, M. [0000-0002-7185-2791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same sample target areas will be investigated using complementary analytical methods—infrared spectrometry, Raman spectrometry, and laser desorption mass spectrometry—to establish mineralogical and organic chemistry composition. Fundamental for implementing this cooperative science strategy is the Raman Laser Spectrometer (RLS) calibration target (CT). The RLS CT features a polyethylene terephthalate disk used for RLS calibration and verification of the instrument during the mission. In addition, special patterns have been recorded on the RLS CT disk that the other instruments can detect and employ to determine their relative position. In this manner, the RLS CT ensures the spatial correlation between the three analytical laboratory instruments: MicrOmega, RLS, and MOMA. The RLS CT has been subjected to a series of tests to qualify it for space utilization and to characterize its behavior during the mission. The results from the joint work performed by the RLS and MicrOmega instrument teams confirm the feasibility of the “combined science” approach envisioned for ExoMars rover operations, whose science return is optimized when complementing the RLS and MicrOmega joint analysis with the autonomous RLS operation.

Unidades organizativas

Descripción

Palabras clave