Proyecto de Investigación:
AYA2015-68012-C2-2-P

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

AYA2015-68012-C2-2-P

Autores

Publicaciones

PublicaciónAcceso Abierto
MONOS: Multiplicity Of Northern O-type Spectroscopic systems I. Project description and spectral classifications and visual multiplicity of previously known objects
(EDP Sciences, 2019-06-05) Maíz Apellániz, J.; Trigueros Páez, E.; Negueruela, I.; Barbá, R. H.; Simón Díaz, S.; Lorenzo, J.; Sota, A.; Gamen, R. C.; Fariña, C.; Salas, J.; Caballero, J. A.; Morrell, N. I.; Pellerín, A.; Alfaro, E. J.; Herrero, A.; Arias, J. I.; Marco, A.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Cabildo de Gran Canaria; 0000-0003-0825-3443; 0000-0001-6770-1977; 0000-0003-1952-3680; 0000-0001-5358-0932; 0000-0002-9404-6952; 0000-0002-5227-9627; 0000-0002-7349-1387; 0000-0003-1887-1966; 0000-0001-8768-2179; 0000-0002-9594-1879; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. Multiplicity in massive stars is key to understanding the chemical and dynamical evolution of galaxies. Among massive stars, those of O type play a crucial role due to their high masses and short lifetimes. Aims. MONOS (Multiplicity Of Northern O-type Spectroscopic systems) is a project designed to collect information and study O-type spectroscopic binaries with δ >  −20°. In this first paper we describe the sample and provide spectral classifications and additional information for objects with previous spectroscopic and/or eclipsing binary orbits. In future papers we will test the validity of previous solutions and calculate new spectroscopic orbits. Methods. The spectra in this paper have two sources: the Galactic O-Star Spectroscopic Survey (GOSSS), a project that obtains blue-violet R ∼ 2500 spectroscopy of thousands of massive stars, and LiLiMaRlin, a library of libraries of high-resolution spectroscopy of massive stars obtained from four different surveys (CAFÉ-BEANS, OWN, IACOB, and NoMaDS) and additional data from our own observing programs and public archives. We have also used lucky images obtained with AstraLux. Results. We present homogeneous spectral classifications for 92 O-type spectroscopic multiple systems and ten optical companions, many of them original. We discuss the visual multiplicity of each system with the support of AstraLux images and additional sources. For eleven O-type objects and for six B-type objects we present their first GOSSS spectral classifications. For two known eclipsing binaries we detect double absorption lines (SB2) or a single moving line (SB1) for the first time, to which we add a third system reported by us recently. For two previous SB1 systems we detect their SB2 nature for the first time and give their first separate spectral classifications, something we have also done for a third object just recently identified as a SB2. We also detect nine new astrometric companions and provide updated information on several others. We emphasize the results for two stars: for σ Ori AaAbB we provide spectral classifications for the three components with a single observation for the first time thanks to a lucky spectroscopy observation obtained close to the Aa,Ab periastron and for θ1 Ori CaCb we add it to the class of Galactic Of?p stars, raising the number of its members to six. Our sample of O-type spectroscopic binaries contains more triple- or higher-order systems than double systems.
PublicaciónAcceso Abierto
Lucky Spectroscopy, an equivalent technique to Lucky Imaging Spatially resolved spectroscopy of massive close visual binaries using the William Herschel Telescope
(EDP Sciences, 2018-07-01) Maíz Apellániz, J.; Barbá, R. H.; Simón Díaz, S.; Sota, A.; Trigueros Páez, E.; Caballero, J. A.; Alfaro, Emilio J.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Maíz Apellániz, J. [0000-0003-0825-3443]; Barbá, R. H. [0000-0003-1086-1579]; Simón Díaz, S. [0000-0003-1168-3524]; Trigueros Páez, E. [0000-0001-6770-1977]
Context. Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. Aims. We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. Methods. We obtained a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions. We selected those with the best characteristics, extracted the spectra using multiple-profile fitting, and combined the results to derive spatially separated spectra. Results. We demonstrate the usefulness of Lucky Spectroscopy by presenting the spatially resolved spectra of the components of each system, in two cases with separations of only ~0.′′3. Those are δ Ori Aa+Ab (resolved in the optical for the first time) and σ Ori AaAb+B (first time ever resolved). We also spatially resolve 15 Mon AaAb+B, ζ Ori AaAb+B (both previously resolved with GOSSS, the Galactic O-Star Spectroscopic Survey), and η Ori AaAb+B, a system with two spectroscopic B+B binaries and a fifth visual component. The systems have in common that they are composed of an inner pair of slow rotators orbited by one or more fast rotators, a characteristic that could have consequences for the theories of massive star formation.
PublicaciónAcceso Abierto
A comprehensive study of NGC 2345, a young open cluster with a low metallicity
(EDP Sciences, 2019-11-05) Alonso Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H.; González Fernández, C.; Castro, N.; European Southern Observatory (ESO); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); European Research Council (ERC); González Fernández, C. [0000-0003-2612-0118]; Tabernero, H. [0000-0002-8087-4298]; Castro, N. [0000-0003-0521-473X]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. NGC 2345 is a young open cluster that hosts seven blue and red supergiants, low metallicity, and a high fraction of Be stars, which makes it a privileged laboratory to study stellar evolution. Aims. We aim to improve the determination of the cluster parameters and study the Be phenomenon. Our objective is also to characterise the seven evolved stars found in NGC 2345 by deriving their atmospheric parameters and chemical abundances. Methods. We performed a complete analysis combining for the first time ubvy photometry with spectroscopy as well as the Gaia Data Release 2. We obtained spectra with classification purposes for 76 stars and high-resolution spectroscopy for an in-depth analysis of the blue and red evolved stars. Results. We identify a new red supergiant and 145 B-type likely members within a radius of 18.7 ± 1.2 arcmin, which implies an initial mass, Mcl ≈ 5200 M⊙. We find a distance of 2.5 ± 0.2 kpc for NGC 2345, placing it at RGC = 10.2 ± 0.2 kpc. Isochrone fitting supports an age of 56 ± 13 Ma, implying masses around 6.5 M⊙ for the supergiants. A high fraction of Be stars (≈10%) is found. From the spectral analysis we estimate an average vrad = +58.6 ± 0.5 km s−1 and a low metallicity, [Fe/H] = −0.28 ± 0.07, for the cluster. We also determine chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. One of the K supergiants, S50, is a Li-rich star, presenting an A(Li) ≈ 2.1. An overabundance of Ba is found, supporting the enhanced s-process. Conclusions. NGC 2345 has a low metallicity for its Galactocentric distance, which is comparable to typical Large Magellanic Cloud stars. It is massive enough to serve as a test bed for theoretical evolutionary models for massive intermediate-mass stars.
PublicaciónAcceso Abierto
Clustered star formation toward Berkeley 87/ON2 I. Multiwavelength census and the population overlap problem
(EDP Sciences, 2021-06-24) De la Fuente, D.; Román Zúñiga, C. G.; Jiménez Bailón, E.; Alves, J.; García, M.; Venus, S.; Generalitat Valenciana; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Consejo Nacional de Ciencia y Tecnología (CONACYT); De la Fuente, D. [0000-0002-6193-7345]
Context. Disentangling line-of-sight alignments of young stellar populations is crucial for observational studies of star-forming complexes. This task is particularly problematic in a Cygnus-X subregion where several components, located at different distances, overlap: the Berkeley 87 young massive cluster, the poorly known [DB2001] Cl05 embedded cluster, and the ON2 star-forming complex, which in turn is composed of several H II regions. Aims. We provide a methodology for building an exhaustive census of young objects that can consistently treat large differences in extinction and distance. Methods. OMEGA2000 near-infrared observations of the Berkeley 87/ON2 field were merged with archival data from Gaia, Chandra, Spitzer, and Herschel and with cross-identifications from the literature. To address the incompleteness effects and selection biases that arise from the line-of-sight overlap, we adapted existing methods for extinction estimation and young object classification. We also defined the intrinsic reddening index, Rint, a new tool for separating intrinsically red sources from those whose infrared color excess is caused by extinction. Finally, we introduce a new method for finding young stellar objects based on Rint. Results. We find 571 objects whose classification is related to recent or ongoing star formation. Together with other point sources with individual estimates of distance or extinction, we compile a catalog of 3005 objects to be used for further membership work. A new distance for Berkeley 87, (1673 ± 17) pc, is estimated as a median of 13 spectroscopic members with accurate Gaia EDR3 parallaxes. Conclusions. The flexibility of our approach, especially regarding the Rint definition, allows overcoming photometric biases caused by large variations in extinction and distance in order to obtain homogeneous catalogs of young sources. The multiwavelength census that results from applying our methods to the Berkeley 87/ON2 field will serve as a basis for disentangling the overlapped populations.

Unidades organizativas

Descripción

Palabras clave