Proyecto de Investigación: PGC2018-095049-B-C22
Cargando...
Colaboradores
Financiadores
ID
PGC2018-095049-B-C22
Autores
Publicaciones
The Alma catalogue of OB stars – II. A cross-match with Gaia DR2 and an updated map of the solar neighbourhood
(Oxford Academics: Oxford University Press, 2021-03-19) Pantaleoni González, M.; Maíz Apellániz, J.; Barbá, R. H.; Cameron Reed, B.; Agencia Estatal de Investigación (AEI); Pantaleoni González, M. [0000-0001-9933-1229]; Maíz Apellániz, J. [0000-0003-0825-3443]; Barbá, R. H. [0000-0003-1086-1579]
We cross-match the Alma catalogue of OB stars with Gaia DR2 astrometry and photometry as a first step towards producing a clean sample of massive stars in the solar neighbourhood with a high degree of completeness. We analyse the resulting colour–absolute magnitude diagram to divide our sample into categories and compare extinction estimates from two sources, finding problems with both of them. The distances obtained with three different priors are found to have few differences among them, indicating that Gaia DR2 distances are robust. An analysis of the 3D distribution of massive stars in the solar neighbourhood is presented. We show that a kinematically distinct structure we dub the Cepheus spur extends from the Orion–Cygnus spiral arm towards the Perseus arm and is located above the Galactic mid-plane, likely being related to the recently discovered Radcliffe wave. We propose that this corrugation pattern in the Galactic disc may be responsible for the recent enhanced star formation at its crests and troughs. We also discuss our plans to extend this work in the immediate future.
Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models
(EDP Sciences, 2021-05-14) Lennon, D. J.; Maíz Apellániz, J.; Irrgang, A.; Bohlin, R. C.; Deustua, S.; Dufton, P. L.; Simón Díaz, S.; Herrero, A.; Casares, J.; Muñoz Darias, T.; Smartt, S. J.; De Burgos, A.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); National Aeronautics and Space Administration (NASA); Lennon, D. J. [0000-0003-3063-4867]
Context. LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims. Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods. The Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The Hubble data, together with the Gaia EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the Teff of the Bstr using the silicon ionization balance, and inferred Teff for the Be star from the fit to the SED.
Results. The UV data strongly constrain the microturbulence velocity to ≲2 km s−1 for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the Hubble SED. For the B+BH single-star model, we find the parameters (Teff, log(L/L⊙), Mspec/M⊙) of the B-type star to be (15 300 ± 300 K, 3.23−0.10+0.09, 5.2−1.4+1.8). For the Bstr star we obtain (12 500 ± 100 K, 2.70−0.09+0.09, 0.8−0.3+0.5), and for the Be star (18 900 ± 200 K, 3.04−0.09+0.09, 3.4−1.8+3.5). While the Be+Bstr model is a better fit to the He I lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si IV resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions. We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the Teff and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21−8+9 M⊙.
The R136 star cluster dissected with Hubble Space Telescope/STIS – II. Physical properties of the most massive stars in R136
(Oxford Academics: Oxford University Press, 2020-09-14) Bestenlehner, J. M.; Crowther, P. A.; Caballero Nieves, S. M.; Schneider, F. R. N.; Simón Díaz, S.; Brands, S. A.; De Koter, A.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Puls, J.; Vink, Jorick S.; Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Agencia Estatal de Investigación (AEI); Schneider, F. [0000-0002-5965-1022]; Bestenlehner, J. [0000-0002-0859-5139]; Caballero Nieves, S. [0000-0002-8348-5191]; Maíz Apellániz, J. [0000-0003-0825-3443]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548
We present an optical analysis of 55 members of R136, the central cluster in the Tarantula Nebula of the Large Magellanic Cloud. Our sample was observed with STIS aboard the Hubble Space Telescope, is complete down to about 40M(circle dot), and includes seven very massive stars with masses over 100M(circle dot). We performed a spectroscopic analysis to derive their physical properties. Using evolutionary models, we find that the initial mass function of massive stars in R136 is suggestive of being top-heavy with a power-law exponent gamma approximate to 2 +/- 0.3, but steeper exponents cannot be excluded. The age of R136 lies between 1 and 2Myr with a median age of around 1.6Myr. Stars more luminous than log L/L-circle dot = 6.3 are helium enriched and their evolution is dominated by mass-loss, but rotational mixing or some other form of mixing could be still required to explain the helium composition at the surface. Stars more massive than 40 M-circle dot have larger spectroscopic than evolutionary masses. The slope of the wind-luminosity relation assuming unclumped stellar winds is 2.41 +/- 0.13 which is steeper than usually obtained (similar to 1.8). The ionizing (log Q(0) [ph/s] = 51.4) and mechanical (logL(SW) [erg/s] = 39.1) output of R136 is dominated by the most massive stars (> 100M(circle dot)). R136 contributes around a quarter of the ionizing flux and around a fifth of the mechanical feedback to the overall budget of the Tarantula Nebula. For a census of massive stars of the Tarantula Nebula region, we combined our results with the VLT-FLAMES Tarantula Survey plus other spectroscopic studies. We observe a lack of evolved Wolf-Rayet stars and luminous blue and red supergiants.
Galactic extinction laws – II. Hidden in plain sight, a new interstellar absorption band at 7700 Å broader than any known DIB
(Oxford Academics: Oxford University Press, 2021-02-12) Maíz Apellániz, J.; Barbá, R. H.; Caballero, J. A.; Bohlin, R. C.; Fariña, C.; Agencia Estatal de Investigación (AEI)
We have detected a broad interstellar absorption band centred close to 7700 Å and with a full width at half-maximum (FWHM) of 176.6 ± 3.9 Å. This is the first such absorption band detected in the optical range and is significantly wider than the numerous diffuse interstellar bands (DIBs). It remained undiscovered until now because it is partially hidden behind the A telluric band produced by O2. The band was discovered using STIS@HST spectra and later detected in a large sample of stars of diverse type (OB stars, BA supergiants, red giants), using further STIS and ground-based spectroscopy. The EW of the band is measured and compared with our extinction and K I λλ7667.021, 7701.093 measurements for the same sample. The carrier is ubiquitous in the diffuse and translucent Galactic interstellar medium (ISM) but is depleted in the environment around OB stars. In particular, it appears to be absent or nearly so in sightlines rich in molecular carbon. This behaviour is similar to that of the σ-type DIBs, which originate in the low/intermediate-density UV-exposed ISM but are depleted in the high-density UV-shielded molecular clouds. We also present an update on our previous work on the relationship between E(4405–5495) and R5495 and incorporate our results into a general model of the ISM.
Validation of the accuracy and precision of Gaia EDR3 parallaxes with globular clusters
(EDP Sciences, 2021-04-28) Maíz Apellániz, J.; Pantaleoni González, M.; Barbá, R. H.; 0000-0003-0825-3443; 0000-0001-9933-1229; 0000-0003-1086-1579
Context. The recent early third data release (EDR3) from the Gaia mission has produced parallaxes for 1.468 × 109 sources with better quality than those reported in the previous data release. Nevertheless, there are calibration issues with the data that require corrections to the published values and uncertainties.
Aims. We want to properly characterize the behavior of the random and systematic uncertainties of the Gaia EDR3 parallaxes in order to maximize the precision of the derived distances without compromising their accuracy. We also aim to provide a step-by-step procedure for the calculation of distances to stars and stellar clusters when using these parallaxes.
Methods. We reanalyzed some of the data presented in the calibration papers for quasar and Large Magellanic Cloud (LMC) parallaxes and combine these results with measurements for six bright globular clusters. We calculated the angular covariance of EDR3 parallaxes at small separations (up to a few degrees) based on the LMC results and combined it with the results for larger angles using quasars to obtain an approximate analytical formula for the angular covariance over the whole sky. The results for the six globular clusters were used to validate the parallax bias correction as a function of magnitude, color, and ecliptic latitude and to determine the multiplicative constant k used to convert internal uncertainties to external ones.
Results. The angular covariance at zero separation is estimated to be 106 μas2, yielding a minimum (systematic) uncertainty for EDR3 parallaxes of 10.3 μas for individual stars or compact stellar clusters. This value can be slightly reduced for globular clusters that span ≳30′ after considering the behavior of the angular covariance of the parallaxes for small separations. A recent parallax bias correction is found to work quite well, except perhaps for the brighter magnitudes, where improvements may be possible. The value of k is found to be 1.1–1.7 and to depend on G. We find that stars with moderately large values of the renormalized unit weight error can still provide useful parallaxes, albeit with larger values of k. We give accurate and precise Gaia EDR3 distances to the six globular clusters, and for the specific case of 47 Tuc we are able to beat the angular covariance limit through the use of the background Small Magellanic Cloud as a reference and derive a high-precision distance of 4.53 ± 0.06 kpc. Finally, a recipe for the derivation of distances to stars and stellar clusters using Gaia EDR3 parallaxes is given.