Proyecto de Investigación: PGC2018-0913741-B-C22
Cargando...
Colaboradores
Financiadores
ID
PGC2018-0913741-B-C22
Autores
Publicaciones
The IACOB project VI. On the elusive detection of massive O-type stars close to the ZAMS
(EDP Sciences, 2020-06-30) Holgado, G.; Simón Díaz, S.; Haemmerlé, L.; Lennon, D. J.; Barbá, R. H.; Cerviño, M.; Castro, N.; Herrero, A.; Meynet, G.; Arias, J. I.; Agencia Estatal de Investigación (AEI); Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Swiss National Science Foundation (SNSF); European Research Council (ERC); Holgado, G. [0000-0002-9296-8259]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. The apparent lack of massive O-type stars near the zero-age main sequence, or ZAMS (at ages <2 Myr), is a topic that has been widely discussed in the past 40 yr. Different explanations for the elusive detection of these young massive stars have been proposed from the observational and theoretical side, but no firm conclusions have been reached yet.
Aims. We reassess this empirical result here, benefiting from the high-quality spectroscopic observations of (more than 400) Galactic O-type stars gathered by the IACOB and OWN surveys.
Methods. We used effective temperatures and surface gravities resulting from a homogeneous semi-automatized IACOB-GBAT/FASTWIND spectroscopic analysis to locate our sample of stars in the Kiel and spectroscopic Hertzsprung-Russell (sHR) diagrams. We evaluated the completeness of our magnitude-limited sample of stars as well as potential observational biases affecting the compiled sample using information from the Galactic O star catalog. We discuss limitations and possible systematics of our analysis method, and compare our results with other recent studies using smaller samples of Galactic O-type stars. We mainly base our discussion on the distribution of stars in the sHR diagram in order to avoid the use of still uncertain distances to most of the stars in our sample. However, we also performed a more detailed study of the young cluster Trumpler-14 as an illustrative example of how Gaia cluster distances can help to construct the associated classical HR diagram.
Results. We find that the apparent lack of massive O-type stars near the ZAMS with initial evolutionary masses in the range between ≈30 and 70 M⊙ still persist even when spectroscopic results from a large non-biased sample of stars are used. We do not find any correlation between the dearth of stars close to the ZAMS and obvious observational biases, limitations of our analysis method, and/or the use of one example spectroscopic HR diagram instead of the classical HR diagram. Finally, by investigating the effect of the efficiency of mass accretion during the formation process of massive stars, we conclude that an adjustment of the mass accretion rate towards lower values than canonically assumed might reconcile the hotter boundary of the empirical distribution of optically detected O-type stars in the spectroscopic HR diagram and the theoretical birthline for stars with masses above ≈30 M⊙. Last, we also discuss how the presence of a small sample of O2-O3.5 stars found much closer to the ZAMS than the main distribution of Galactic O-type star might be explained in the context of this scenario when the effect of nonstandard star evolution (e.g. binary interaction, mergers, and/or homogeneous evolution) is taken into account.
Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models
(EDP Sciences, 2021-05-14) Lennon, D. J.; Maíz Apellániz, J.; Irrgang, A.; Bohlin, R. C.; Deustua, S.; Dufton, P. L.; Simón Díaz, S.; Herrero, A.; Casares, J.; Muñoz Darias, T.; Smartt, S. J.; De Burgos, A.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); National Aeronautics and Space Administration (NASA); Lennon, D. J. [0000-0003-3063-4867]
Context. LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims. Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods. The Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The Hubble data, together with the Gaia EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the Teff of the Bstr using the silicon ionization balance, and inferred Teff for the Be star from the fit to the SED.
Results. The UV data strongly constrain the microturbulence velocity to ≲2 km s−1 for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the Hubble SED. For the B+BH single-star model, we find the parameters (Teff, log(L/L⊙), Mspec/M⊙) of the B-type star to be (15 300 ± 300 K, 3.23−0.10+0.09, 5.2−1.4+1.8). For the Bstr star we obtain (12 500 ± 100 K, 2.70−0.09+0.09, 0.8−0.3+0.5), and for the Be star (18 900 ± 200 K, 3.04−0.09+0.09, 3.4−1.8+3.5). While the Be+Bstr model is a better fit to the He I lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si IV resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions. We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the Teff and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21−8+9 M⊙.
The R136 star cluster dissected with Hubble Space Telescope/STIS – II. Physical properties of the most massive stars in R136
(Oxford Academics: Oxford University Press, 2020-09-14) Bestenlehner, J. M.; Crowther, P. A.; Caballero Nieves, S. M.; Schneider, F. R. N.; Simón Díaz, S.; Brands, S. A.; De Koter, A.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Puls, J.; Vink, Jorick S.; Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Agencia Estatal de Investigación (AEI); Schneider, F. [0000-0002-5965-1022]; Bestenlehner, J. [0000-0002-0859-5139]; Caballero Nieves, S. [0000-0002-8348-5191]; Maíz Apellániz, J. [0000-0003-0825-3443]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548
We present an optical analysis of 55 members of R136, the central cluster in the Tarantula Nebula of the Large Magellanic Cloud. Our sample was observed with STIS aboard the Hubble Space Telescope, is complete down to about 40M(circle dot), and includes seven very massive stars with masses over 100M(circle dot). We performed a spectroscopic analysis to derive their physical properties. Using evolutionary models, we find that the initial mass function of massive stars in R136 is suggestive of being top-heavy with a power-law exponent gamma approximate to 2 +/- 0.3, but steeper exponents cannot be excluded. The age of R136 lies between 1 and 2Myr with a median age of around 1.6Myr. Stars more luminous than log L/L-circle dot = 6.3 are helium enriched and their evolution is dominated by mass-loss, but rotational mixing or some other form of mixing could be still required to explain the helium composition at the surface. Stars more massive than 40 M-circle dot have larger spectroscopic than evolutionary masses. The slope of the wind-luminosity relation assuming unclumped stellar winds is 2.41 +/- 0.13 which is steeper than usually obtained (similar to 1.8). The ionizing (log Q(0) [ph/s] = 51.4) and mechanical (logL(SW) [erg/s] = 39.1) output of R136 is dominated by the most massive stars (> 100M(circle dot)). R136 contributes around a quarter of the ionizing flux and around a fifth of the mechanical feedback to the overall budget of the Tarantula Nebula. For a census of massive stars of the Tarantula Nebula region, we combined our results with the VLT-FLAMES Tarantula Survey plus other spectroscopic studies. We observe a lack of evolved Wolf-Rayet stars and luminous blue and red supergiants.
Variability of OB stars from TESS southern Sectors 1–13 and high-resolution IACOB and OWN spectroscopy
(EDP Sciences, 2020-07-13) Burssens, S.; Simón Díaz, S.; Bowman, D. M.; Holgado, G.; Michielsen, M.; De Burgos, A.; Castro, N.; Barbá, R. H.; Aerts, C.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); National Aeronautics and Space Administration (NASA); Holgado, G. [0000-0002-9296-8259]; Bowman, D. [0000-0001-7402-3852]; Burssens, S. [0000-0002-1593-0863]; Aerts, C. [0000-0003-1822-7126]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. The lack of high-precision long-term continuous photometric data for large samples of stars has impeded the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling have remained limited to a few dozen dwarfs. The TESS nominal space mission has surveyed the southern sky, including parts of the galactic plane, yielding continuous data across at least 27 d for hundreds of OB stars.
Aims. We aim to couple TESS data in the southern sky with ground-based spectroscopy to study the variability in two dimensions, mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the predicted theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data.
Methods. We compose a sample of 98 OB-type stars observed by TESS in Sectors 1–13 and with available multi-epoch, high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2 min light curves of dozens of OB-type stars, which have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb–Scargle periodograms, we performed variability classification and frequency analysis. We placed the stars in the spectroscopic Hertzsprung–Russell diagram to interpret the variability in an evolutionary context.
Results. We deduce the diverse origins of the mmag-level variability found in all of the 98 OB stars in the TESS data. We find among the sample several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars.
Conclusions. We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips, we discuss the current shortcomings in non-adiabatic pulsation theory and the distribution of pulsators in the upper Hertzsprung–Russell diagram.
Mapping the core of the Tarantula Nebula with VLT-MUSE II. The spectroscopic Hertzsprung-Russell diagram of OB stars in NGC 2070
(EDP Sciences, 2021-04-13) Castro, N.; Crowther, P. A.; Evans, C. J.; Vink, J. S.; Puls, J.; Herrero, A.; García, M.; Selman, F. J.; Roth, M. M.; Simón Díaz, S.; Deutsche Forschungsgemeinschaft (DFG); Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI); Agencia Estatal de Investigación (AEI); Castro, N. [0000-0003-0521-473X]; Vink, J. S. [0000-0002-8445-4397]
We present the spectroscopic analysis of 333 OB-type stars extracted from VLT-MUSE observations of the central 30 × 30 pc of NGC 2070 in the Tarantula Nebula on the Large Magellanic Cloud, the majority of which are analysed for the first time. The distribution of stars in the spectroscopic Hertzsprung-Russell diagram (sHRD) shows 281 stars in the main sequence. We find two groups in the main sequence, with estimated ages of 2.1 ± 0.8 and 6.2 ± 2 Myr. A subgroup of 52 stars is apparently beyond the main sequence phase, which we consider to be due to emission-type objects and/or significant nebular contamination affecting the analysis. As in previous studies, stellar masses derived from the sHRD are systematically larger than those obtained from the conventional HRD, with the differences being largest for the most massive stars. Additionally, we do not find any trend between the estimated projected rotational velocity and evolution in the sHRD. The projected rotational velocity distribution presents a tail of fast rotators that resembles findings in the wider population of 30 Doradus. We use published spectral types to calibrate the He Iλ4921/He IIλ5411 equivalent-width ratio as a classification diagnostic for early-type main sequence stars when the classical blue-visible region is not observed. Our model-atmosphere analyses demonstrate that the resulting calibration is well correlated with effective temperature.