Proyecto de Investigación:
AstroFIt2 664931

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

664931

Autores

Publicaciones

PublicaciónAcceso Abierto
Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC 1333-IRAS4A
(EDP Sciences, 2020-05-15) Taquet, V.; Codella, C.; De Simone, M.; López Sepulcre, A.; Pineda, J. E.; Segura Cox, D.; Ceccarelli, C.; Caselli, P.; Gusdorf, A.; Persson, M. V.; Alves, F.; Caux, E.; Favre, C.; Fontani, F.; Neri, R.; Oya, Y.; Sakai, N.; Vastel, C.; Yamamoto, S.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Chacón Tanarro, A.; Dulieu, F.; Enrique Romero, J.; Feng, S.; Holdship, J.; Lefloch, B.; Al Edhari, A. J.; Jiménez Serra, I.; Kahane, C.; Lattanzi, V.; Ospina Zamudio, J.; Podio, L.; Punanova, A.; Rimola, A.; Sims, I. R.; Spezzano, S.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Vazart, F.; Viti, S.; Witzel, A.; Agence Nationale de la Recherche (ANR); European Research Council (ERC); Ceccarelli, C. [0000-0001-9664-6292]; Balucani, N. [0000-0001-5121-5683]; Rimola, A. [0000-0002-9637-4554]; Al Edhari, A. J. [0000-0003-4089-841X]; De Oliveira Alves, F. [0000-0002-7945-064X]; Lefloch, B. [0000-0002-9397-3826]; Persson, M. V. [0000-0002-1100-5734]; Bachiller, R. [0000-0002-5331-5386]; Pineda, J. [0000-0002-3972-1978]; Segura Cox, D. [0000-0003-3172-6763]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC 1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC 1333-IRAS4A in the 1.3, 2, and 3 mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east–south west direction. SO is detected at extremely high radial velocity up to + 25 km s−1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm−3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.
PublicaciónRestringido
Vibrationally excited HC3N emission in NGC 1068: tracing the recent star formation in the starburst ring
(Oxford Academics: Oxford University Press, 2021-01-25) Rico Villas, F.; Martín Pintado, J.; González Alfonso, E.; Rivilla, V. M.; Martín, S.; García Burillo, S.; Jiménez Serra, I.; Sánchez García, M.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Rivilla, V. M. [0000-0002-2887-5859]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Using the ALMA data, we have studied the HC3N and continuum emission in the starburst pseudo-ring (SB pseudo-ring) and the circumnuclear disc (CND) of the SB/active galactic nucleus (AGN) composite galaxy NGC 1068. We have detected emission from vibrationally excited HC3N (HC3N*) only towards one star-forming region of the SB pseudo-ring. Remarkably, HC3N* was not detected towards the CND despite its large HC3N v = 0 column density. From local thermodynamic equilibrium (LTE) and non-LTE modelling of HC3N*, we obtained a dust temperature (Tdust) of ∼250 K and a density (nH2) of 6×105 cm−3 for this star-forming region. The estimated infrared (IR) luminosity of 5.8 × 108 L⊙ is typical of proto-superstar clusters (proto-SSCs) observed in the SB galaxy NGC 253. We use the continuum emissions at 147 and 350 GHz, along with CO and Pa α, to estimate the ages of other 14 SSCs in the SB pseudo-ring. We find the SSCs to be associated with the region connecting the nuclear bar with the SB pseudo-ring, supporting the inflow scenario. For the CND, our analysis yields Tdust ≤ 100 K and nH2∼(3−6)×105 cm−3. The very different dust temperatures found for the CND and the proto-SSC indicate that, while the dust in the proto-SSC is being efficiently heated from the inside by the radiation from massive protostars, the CND is being heated externally by the AGN, which in the IR optically thin case can only heat the dust to 56 K. We discuss the implications of the non-detection of HC3N* near the luminous AGN in NGC 1068 on the interpretation of the HC3N* emission observed in the SB/AGN composite galaxies NGC 4418 and Arp 220.
PublicaciónAcceso Abierto
The GUAPOS project: G31.41+0.31 Unbiased ALMA sPectral Observational Survey I. Isomers of C2H4O2
(EDP Sciences, 2020-12-02) Mininni, C.; Beltrán, M. T.; Rivilla, V. M.; Sánchez Monge, A.; Fontani, F.; Möller, T.; Cesaroni, R.; Schilke, P.; Viti, S.; Jiménez Serra, I.; Colzi, L.; Lorenzani, A.; Testi, L.; Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Agencia Estatal de Investigación (AEI); European Research Council (ERC); Mininni, C. [0000-0002-2974-4703]; Beltrán Sorolla, M. T. [0000-0003-3315-5626]; Rivilla, V. M. [0000-0002-2887-5859]; Sánchez Monge, A. [0000-0002-3078-9482]; Fontani, F. [0000-0003-0348-3418]; Möller, T. [0000-0002-9277-8025]; Cesaroni, R. [0000-0002-2430-5103]; Schilke, P. [0000-0003-2141-5689]; Viti, S. [0000-0001-8504-8844]; Jiménez Serra, I. [0000-0003-4493-8714]; Colzi, L. [0000-0001-8064-6394]; Lorenzani, A. [0000-0002-4685-3434]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are needed, in particular, to resolve line blending in chemically rich sources and identify each molecule (especially for complex organic molecules). These kinds of observations have already been successfully carried out, primarily towards the Galactic Center, a region that shows peculiar environmental conditions. Aims. We present an unbiased spectral survey of one of the most chemically rich hot molecular cores located outside the Galactic Center, in the high-mass star-forming region G31.41+0.31. The aim of this 3mm spectral survey is to identify and characterize the physical parameters of the gas emission in different molecular species, focusing on complex organic molecules. In this first paper, we present the survey and discuss the detection and relative abundances of the three isomers of C2H4O2: methyl formate, glycolaldehyde, and acetic acid. Methods. Observations were carried out with the ALMA interferometer, covering all of band 3 from 84 to 116 GHz (~32 GHz bandwidth) with an angular resolution of 1.2′′ × 1.2′′ (~ 4400 au × 4400 au) and a spectral resolution of ~0.488 MHz (~1.3−1.7 km s−1). The transitions of the three molecules have been analyzed with the software XCLASS to determine the physical parameters of the emitted gas. Results. All three isomers were detected with abundances of (2 ± 0.6) × 10−7, (4.3−8) × 10−8, and (5.0 ± 1.4) × 10−9 for methyl formate, acetic acid, and glycolaldehyde, respectively. Methyl formate and acetic acid abundances are the highest detected up to now, if compared to sources in the literature. The size of the emission varies among the three isomers with acetic acid showing the most compact emission while methyl formate exhibits the most extended emission. Different chemical pathways, involving both grain-surface chemistry and cold or hot gas-phase reactions, have been proposed for the formation of these molecules, but the small number of detections, especially of acetic acid and glycolaldehyde, have made it very difficult to confirm or discard the predictions of the models. The comparison with chemical models in literature suggests the necessity of grain-surface routes for the formation of methyl formate in G31, while for glycolaldehyde both scenarios could be feasible. The proposed grain-surface reaction for acetic acid is not capable of reproducing the observed abundance in this work, while the gas-phase scenario should be further tested, given the large uncertainties involved.
PublicaciónAcceso Abierto
Propargylimine in the laboratory and in space: millimetre-wave spectroscopy and its first detection in the ISM
(EDP Sciences, 2020-08-20) Bizzocchi, L.; Prudenzano, D.; Rivilla, V. M.; Pietropolli Charmet, A.; Giuliano, B. M.; Caselli, P.; Martín Pintado, J.; Jiménez Serra, I.; Martín, S.; Requena Torres, M. A.; Rico Villas, F.; Guillemin, J. C.; Centre National D'Etudes Spatiales (CNES); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Rico Villas, F. [0000-0002-5351-3497]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. Small imines containing up to three carbon atoms are present in the interstellar medium (ISM). As alkynyl compounds are abundant in this medium, propargylimine (2-propyn-1-imine, HC ≡C−CH =NH) thus represents a promising candidate for a new interstellar detection. Aims. The goal of the present work is to perform a comprehensive laboratory investigation of the rotational spectrum of propargylimine in its ground vibrational state in order to obtain a highly precise set of rest frequencies and to search for it in space. Methods. The rotational spectra of E and Z geometrical isomers of propargylimine have been recorded in the laboratory in the 83–500 GHz frequency interval. The measurements have been performed using a source-modulation millimetre-wave spectrometer equipped with a pyrolysis system for the production of unstable species. High-level ab initio calculations were performed to assist the analysis and to obtain reliable estimates for an extended set of spectroscopic quantities. We searched for propargylimine at 3 mm and 2 mm in the spectral survey of the quiescent giant molecular cloud G+0.693-0.027 located in the central molecular zone, close to the Galactic centre. Results. About 1000 rotational transitions have been recorded for the E- and Z-propargylimine, in the laboratory. These new data have enabled the determination of a very accurate set of spectroscopic parameters including rotational, quartic, and sextic centrifugal distortion constants. The improved spectral data allowed us to perform a successful search for this new imine in the G+0.693-0.027 molecular cloud. Eighteen lines of Z-propargylimine were detected at level >2.5σ, resulting in a column-density estimate of N = (0.24 ± 0.02) × 1014 cm−2. An upper limit was retrieved for the higher energy E isomer, which was not detected in the data. The fractional abundance (with respect to H2) derived for Z-propargylimine is 1.8 × 10−10. We discuss the possible formation routes by comparing the derived abundance with those measured in the source for possible chemical precursors.
PublicaciónAcceso Abierto
Fragmentation in the massive G31.41+0.31 protocluster
(EDP Sciences, 2021-04-20) Beltrán, M. T.; Rivilla, V. M.; Cesaroni, R.; Maud, L. T.; Galli, D.; Moscadelli, L.; Lorenzani, A.; Ahmadi, A.; Beuther, H.; Csengeri, T.; Etoka, S.; Goddi, C.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Peters, T.; Sánchez Monge, Á.; Schilke, P.; Van der Tak, F.; Vig, S.; Zinnecker, H.; Comunidad de Madrid; Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT)
Context. ALMA observations at 1.4 mm and ~0.′′2 (~750 au) angular resolution of the Main core in the high-mass star-forming region G31.41+0.31 have revealed a puzzling scenario. On the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic field; on the other hand, rotation and infall speed up toward the core center, where two massive embedded free-free continuum sources have been detected, pointing to an unstable core having undergone fragmentation. Aims. To establish whether the Main core is indeed monolithic or if its homogeneous appearance is due to a combination of large dust opacity and low angular resolution, we carried out millimeter observations at higher angular resolution and different wavelengths. Methods. We carried out ALMA observations at 1.4 mm and 3.5 mm that achieved angular resolutions of ~0.′′1 (~375 au) and ~0.′′075 (~280 au), respectively. VLA observations at 7 mm and 1.3 cm at even higher angular resolution, ~0.′′05 (~190 au) and ~0.′′07 (~260 au), respectively, were also carried out to better study the nature of the free-free continuum sources detected in the core. Results. The millimeter continuum emission of the Main core has been clearly resolved into at least four sources, A, B, C, and D, within 1″, indicating that the core is not monolithic. The deconvolved radii of the dust emission of the sources, estimated at 3.5 mm, are ~400–500 au; their masses range from ~15 to ~26 M⊙; and their number densities are several 109 cm−3. Sources A and B, located closer to the center of the core and separated by ~750 au, are clearly associated with two free-free continuum sources, likely thermal radio jets, and are brightest in the core. The spectral energy distribution of these two sources and their masses and sizes are similar and suggest a common origin. Source C has not been detected at centimeter wavelengths, while source D has been clearly detected at 1.3 cm. Source D is likely the driving source of an E–W SiO outflow previously detected in the region, which suggests that the free-free emission might be coming from a radio jet. Conclusions. The observations have confirmed that the Main core in G31 is collapsing, that it has undergone fragmentation, and that its homogeneous appearance previously observed at short wavelengths is a consequence of both high dust opacity and insufficient angular resolution. The low level of fragmentation together with the fact that the core is moderately magnetically supercritical, suggests that G31 could have undergone a phase of magnetically regulated evolution characterized by a reduced fragmentation efficiency, eventually leading to the formation of a small number of relatively massive dense cores.

Unidades organizativas

Descripción

Palabras clave