Proyecto de Investigación:
PID2019-104205GB-C22

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

PID2019-104205GB-C22

Autores

Publicaciones

PublicaciónAcceso Abierto
Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland
(Multidisciplinary Digital Publishing Institute (MDPI), 2021-02-14) García López, Eva; Serrano, S.; Ángel Calvo, M.; Peña Pérez, S.; Sánchez Casanova, S.; García Descalzo, L.; Cid, Cristina; Agencia Estatal de Investigación (AEI); 0000-0001-5128-4558; 0000-0002-0083-6786; 0000-0003-1086-3056; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.
PublicaciónAcceso Abierto
Multivariate Analysis Applied to Microwave-Driven Cyanide Polymerization: A Statistical View of a Complex System
(Multidisciplinary Digital Publishing Institute (MDPI), 2023-01-12) Pérez Fernández, Cristina; González Toril, Elena; Mateo Martí, Eva; Ruiz Bermejo, Marta; Ministerio de Ciencia e Innovación (MICINN)
For the first time, chemometrics was applied to the recently reported microwave-driven cyanide polymerization. Fast, easy, robust, low-cost, and green-solvent processes are characteristic of these types of reactions. These economic and environmental benefits, originally inspired by the constraints imposed by plausible prebiotic synthetic conditions, have taken advantage of the development of a new generation of HCN-derived multifunctional materials. HCN-derived polymers present tunable properties by temperature and reaction time. However, the apparently random behavior observed in the evolution of cyanide polymerizations, assisted by microwave radiation over time at different temperatures, leads us to study this highly complex system using multivariate analytical tools to have a proper view of the system. Two components are sufficient to explain between 84 and 98% of the total variance in the data in all principal component analyses. In addition, two components explain more than 91% of the total variance in the data in the case of principal component analysis for categorical data. These consistent statistical results indicate that microwave-driven polymerization is a more robust process than conventional thermal syntheses but also that plausible prebiotic chemistry in alkaline subaerial environments could be more complex than in the aerial part of these systems, presenting a clear example of the “messy chemistry” approach of interest in the research about the origins of life. In addition, the methodology discussed herein could be useful for the data analysis of extraterrestrial samples and for the design of soft materials, in a feedback view between prebiotic chemistry and materials science.
PublicaciónAcceso Abierto
Biofilm mechanics in an extremely acidic environment: microbiological significance
(Royal Society of Chemistry, 2021-02-15) Souza Egipsy, V.; Vega, J.; González Toril, Elena; Aguilera, Á.; Agencia Estatal de Investigación (AEI); 0000-0002-9690-9889; 0000-0002-0377-4410; 0000-0002-5750-0765; 0000-0003-4979-7578
A variety of natural biofilms were collected from an extremely acidic environment at Río Tinto (Spain). In order to provide insights into the structure–function relationship, the microstructure of the biofilms was explored using low temperature scanning electron microscopy (LTSEM) in combination with rheological analysis. The creep-recovery experiment results have demonstrated the typical behaviour of viscoelastic materials that combine both elastic and viscous characters. The LTSEM visualization and rheological characterization of biofilms revealed that the network density increased in bacterial biofilms and was the lowest in protist Euglena biofilms. This means that, in the latter biofilms, a lower density of interactions exist, suggesting that the whole system experiences enhanced mobility under external mechanical stress. The samples with the highest dynamic moduli (Leptospirillum–Acidiphilium, Zygnemopsis, Chlorella and Cyanidium) have shown the typical strain thinning behaviour, whereas the Pinnularia and Euglena biofilms exhibited a viscous thickening reaction. The Zygnemopsis filamentous floating structure has the highest cohesive energy and has shown distinctive enhanced resilience and connectivity. This suggests that biofilms should be viewed as soft viscoelastic systems the properties of which are determined by the main organisms and their extracellular polymeric substances. The fractional Maxwell model has been found to explain the rheological behaviour of the observed complex quite well, particularly the power-law behaviour and the characteristic broad relaxation response of these systems.
PublicaciónAcceso Abierto
Tuning the Morphology in the Nanoscale of NH4CN Polymers Synthesized by Microwave Radiation: A Comparative Study
(Multidisciplinary Digital Publishing Institute (MDPI), 2021-12-24) Pérez Fernández, Cristina; Valles González, M. P.; González Toril, Elena; Mateo Martí, Eva; De la Fuente, J. L.; Ruiz Bermejo, Marta; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
A systematic study is presented to explore the NH4CN polymerization induced by microwave (MW) radiation, keeping in mind the recent growing interest in these polymers in material science. Thus, a first approach through two series, varying the reaction times and the temperatures between 130 and 205 °C, was conducted. As a relevant outcome, using particular reaction conditions, polymer conversions similar to those obtained by means of conventional thermal methods were achieved, with the advantage of a very significant reduction of the reaction times. The structural properties of the end products were evaluated using compositional data, spectroscopic measurements, simultaneous thermal analysis (STA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). As a result, based on the principal component analysis (PCA) from the main experimental results collected, practically only the crystallographic features and the morphologies in the nanoscale were affected by the MW-driven polymerization conditions with respect to those obtained by classical syntheses. Therefore, MW radiation allows us to tune the morphology, size and shape of the particles from the bidimensional C=N networks which are characteristic of the NH4CN polymers by an easy, fast, low-cost and green-solvent production. These new insights make these macromolecular systems attractive for exploration in current soft-matter science.
PublicaciónAcceso Abierto
Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production
(Multidisciplinary Digital Publishing Institute (MDPI), 2021-08-04) García López, Eva; Alcazar, P.; Cid, Cristina; Agencia Estatal de Investigación (AEI); Alcazar, P. [0000-0002-2276-5376]; Cid, C. [0000-0001-5128-4558]; Unidad de Excelencia Científica María de Maeztu del Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.

Unidades organizativas

Descripción

Palabras clave