(Espacio) Artículos
URI permanente para esta colecciónhttps://inta.metricsalad.com/handle/123456789/56
Buscar
Examinando (Espacio) Artículos por Materia "Additive manufacturing"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido Design of a planetary protection cover for EMC testing of a spacial magnetic sensor(Institute of Electrical and Electronics Engineers, 2019-10-17) Fernández Romero, S.; Parrondo, M. C.; Díaz Michelena, M.; Muñóz Rebate, I.; León Calero, Marina; Martín Iglesias, S.; Plaza Gallardo, B.; Escot Bocanegra, D.; Poyatos Martínez, D.; Jiménez Lorenzo, María; López Sanz, Daniel; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI)This paper explains the research process carried out for the development and manufacture of the planetary protection cover for carrying out the electromagnetic compatibility (EMC) tests of the an-isotropic magneto-resistance (AMR) sensor of the ExoMars 2020 mission. This mission has strict bioburden requirements. The electromagnetic properties of several materials have been analyzed in order to study their transmission coefficient and the innovation of this project is the use of fused deposition modeling (FDM) technology as manufacturing method. Additive manufacturing is presented as a promising technology in the field of radiofrequency since it can use a wide range of polymeric materials (thermoplastics) with low transmission coefficient. Observing the electromagnetic (EM) characterization results, it was decided to manufacture a protective cover using FDM technology, because it allows control over the grounding of the instrument and facilitates the integration, cleaning and protection against impacts during the manipulation, with great versatility and low cost. Finally, the cover has been verified during the acceptance EMC tests of the flight model AMR instrument.Publicación Restringido On the Design of a Planetary Protection Shell for EMC Testing on Space Equipment(Institute of Electrical and Electronics Engineers, 2020-06-22) Fernández Romero, S.; Muñoz Rebate, I.; Jiménez Lorenzo, María; Plaza Gallardo, B.; Poyatos Martínez, D.; Díaz Michelena, M.; Agencia Estatal de Investigación (AEI); Fernández Romero, S. [0000-0002-7169-2222]; Jiménez Lorenzo, M. [0000-0003-1243-6111]; Plaza Gallardo, B. [0000-0003-3615-0353]; Poyatos Martínez, D. [0000-0002-3829-5110]This letter addresses on the design of a planetary protection shell for performing the Electro-Magnetic Compatibility (EMC) tests of the Anisotropic Magneto-Resistance (AMR) sensor of the ExoMars mission. This mission has strict bio-burden requirements. The ElectroMagnetic (EM) properties of several materials have been investigated for measuring their transmission coefficients and the novelty of this letter is the use of Fused Deposition Modeling (FDM) technology as the production method. Additive manufacturing is presented as a promising technology in the field of radiofrequency since it can use a wide range of materials (including thermoplastics) with high and low transmission coefficient. The investigation comprises the analysis of the electromagnetic properties of several 3D printer materials in order to study their transmission coefficients. Seeing the EM characterization results, it was decided to produce a shell using FDM technology because it provides control over the grounding of the instrument and makes easier the integration, cleaning and protection against impacts during the operation, with great versatility and low cost. To finish, the shell has been proved during the acceptance EMC tests of the flight model and flight spare AMR instrument.