Metrología y Calibración
URI permanente para esta comunidadhttps://inta.metricsalad.com/handle/123456789/64
Buscar
Examinando Metrología y Calibración por Materia "Effective emissivity"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido A simple geometrical model for calculation of the effective emissivity in blackbody cylindrical cavities(Springer Link, 2015-10-15) De Lucas Veguillas, Javier; Instituto Nacional de Técnica Aeroespacial (INTA)A simple geometrical model for calculating the effective emissivity in blackbody cylindrical cavities has been developed. The back ray tracing technique and the Monte Carlo method have been employed, making use of a suitable set of coordinates and auxiliary planes. In these planes, the trajectories of individual photons in the successive reflections between the cavity points are followed in detail. The theoretical model is implemented by using simple numerical tools, programmed in Microsoft Visual Basic for Application and Excel. The algorithm is applied to isothermal and non-isothermal diffuse cylindrical cavities with a lid; however, the basic geometrical structure can be generalized to a cylindro-conical shape and specular reflection. Additionally, the numerical algorithm and the program source code can be used, with minor changes, for determining the distribution of the cavity points, where photon absorption takes place. This distribution could be applied to the study of the influence of thermal gradients on the effective emissivity profiles, for example. Validation is performed by analyzing the convergence of the Monte Carlo method as a function of the number of trials and by comparison with published results of different authors.Publicación Restringido Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry(Springer Link, 2018-03-24) De Lucas Veguillas, Javier; Segovia, José Juan; Instituto Nacional de Técnica Aeroespacial (INTA)Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.