(Calib.) Comunicaciones de Congresos
URI permanente para esta colecciónhttps://inta.metricsalad.com/handle/123456789/66
Buscar
Examinando (Calib.) Comunicaciones de Congresos por Materia "Characterization"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Restringido Caracterización electromagnética de materiales aeroespaciales(Universidad de Granada, 2022-11-25) Plaza Gallardo, B.; Ramos Somolinos, D.; Cidrás Estévez, J.; Poyatos Martínez, D.; Instituto Nacional de Técnica Aeroespacial (INTA); Agencia Estatal de Investigación (AEI)"Durante la última década, los materiales compuestos de nueva generación han ganado una mayor importancia como materiales de diseño en muchos sectores industriales, principalmente debido a su bajo peso y excelente desempeño estructural. Entre ellos destacan la impresión 3D por su facilidad de diseño y bajo coste y los materiales compuestos debido al bajo peso manteniendo una buena rigidez y resistencia estructural. Es por eso que son ampliamente utilizados tanto en la industria aeroespacial como en la automotriz. La necesidad de una caracterización electromagnética (EM) adecuada de estos materiales se puede demostrar en un par de ejemplos. En comparación con las superficies metálicas clásicas utilizadas en los aviones, los compuestos de fibra de carbono presentan un blindaje menos efectivo, por lo que estudiar esta característica es fundamental para preservar el buen funcionamiento de los dispositivos ubicados dentro de esas plataformas. Aparte de eso, las características EM de los materiales impresos en 3D difieren con respecto a las materias primas iniciales, como resultado del cambio de fase de estado líquido a sólido cuando se imprimen y, la densidad de relleno en las muestras finales, podría modificar propiedades como su permitividad o la tangente de pérdida. Además de esta proliferación en el uso de materiales avanzados, los componentes electrónicos utilizados en las plataformas aeroespaciales han aumentado en número y en importancia, volviéndose imprescindibles incluso para el uso seguro de la aeronave. Esto hace que la caracterización electromagnética de estos materiales sea indispensable. El INTA, en el marco del proyecto eSAFE (PID2019-106120RB-C32), financiado por el Ministerio de Ciencia e Innovación (MICINN), trabaja en la caracterización electromagnética de materiales. En concreto, el Laboratorio de Electromagnetismo Computacional y Aplicado (CAEM-Lab) del INTA cuenta con diferentes sistemas de medida para caracterización electromagnética, adaptados cada uno de ellos a las necesidades de cada material, frecuencia y aplicación. Teniendo en cuenta todo lo anterior, el objetivo de esta comunicación es la descripción de algunos de los métodos de medida desarrollados y disponibles en el CAEM-Lab para la caracterización de materiales y estructuras aeroespaciales. Adicionalmente, se van a presentar las líneas de investigación actuales y los avances que se quieren conseguir en este campo durante los próximos años."Ítem Acceso Abierto On the characterization of an AHF cavity radiometer and its traceability to WRR/SI(CIEMAT, 2022-02-10) Balenzategui Manzanares, J. L.; De Lucas Veguillas, Javier; Cuenca, J.; Molero, M.; Romero, M. C.; Fabrero, F.; Silva, J. P.; Mejuto, E.; Ibañez, F.J.; Ministerio de Industria, Economía y CompetitividadIn a complementary way to the comparison to WSG to get traceability to WRR (and consequently, to SI), a solar-type cavity radiometer can also be characterized, determining the deviations of the instrument from the ideal realization of the principle of electrical substitution and obtaining its total measurement uncertainty. This work summarizes different techniques and procedures applied for the characterization of an Eppley AHF radiometer. The approach for characterization is based on the analysis of the measurement model function of the instrument. Some results obtained from calibration and testing (voltmeter, area of the precision aperture, resistance of the leads, non equivalence factor), and from numerical simulation (effective absorptance, scattering) are presented. According to these results, current value of standard uncertainty for this instrument is about 0.28% but it is expected that further improvements in the equipment and tests can reduce this figure below 0.1% (1000 ppm) in the near future.