Examinando por Autor "Zapatero Osorio, M. R."
Mostrando 1 - 20 de 24
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A giant exoplanet orbiting a very-low-mass star challenges planet formation models(American Association for the Advancement of Science, 2019-09-27) Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López González, M. J.; Rodríguez López, C.; Cifuentes, C.; Mordasini, C.; Jeffers, S. V.; Rix, H. W.; Ofir, A.; Kürster, M.; Henning, T.; Emsenhuber, A.; Passegger, V. M.; Abellán, F. J.; Rodríguez Trinidad, A.; Pedraz, S.; Aceituno, J.; Seifert, W.; Fernández Martín, A.; Zechmeister, M.; De Juan, E.; Perryman, M. A. C.; Antona, R.; Alonso Floriano, F. J.; Ferro, I. M.; Johnson, E. N.; Labiche, N.; Rebolo, R.; Becerril Jarque, S.; Azzaro, M.; Fuhrmeister, B.; Lizon, J. L.; Perger, M.; Brinkmöller, M.; Berdiñas, Z. M.; Galadí Enríquez, D.; López Santiago, J.; Cortés Contreras, M.; Calvo Ortega, R.; Del Burgo, C.; Gallardo Cava, I.; Rosich, A.; Cardona Guillén, C.; Cano, J.; García Vargas, M. L.; Amado, P. J.; Casanova, V.; Carro, J.; García Piquer, A.; Kaminski, A.; Chaturvedi, P.; Gesa, L.; Abril, M.; Claret, A.; González Álvarez, E.; Ammler von Eiff, M.; Czesla, S.; Barrado, D.; Dorda, R.; González Peinado, R.; Fernández Hernández, Maite; Klüter, J.; Kim, M.; Lara, L. M.; Lampón, M.; López del Fresno, M.; Lodieu, N.; Mancini, L.; Mall, U.; Martín Fernández, P.; Mirabet, E.; Nortmann, L.; Pallé, E.; Caballero, J. A.; Huke, P.; Huber, A.; Holgado, G.; Klutsch, A.; Launhardt, R.; López Salas, F. J.; Stürmer, J.; Suárez, J. C.; Tabernero, H.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Sánchez López, A.; Sánchez Blanco, E.; Sadegi, S.; Labarga, F.; Marfil, E.; Casasayas Barris, N.; Bergond, G.; Martín, E. L.; Mandel, H.; Sarkis, P.; Lázaro, F. J.; Luque, R.; Burn, R.; Marvin, E. L.; Martín Ruiz, S.; Sarmiento, L. F.; González Cuesta, L.; Anglada Escudé, G.; Cárdenas, M. C.; Nelson, R. P.; Moya, A.; Schäfer, S.; Reffert, S.; Casal, E.; Pascual, J.; Nowak, G.; Schlecker, M.; Quirrenbach, A.; Kemmer, J.; Pérez Medialdea, D.; Pavlov, A.; Schmitt, J. H. M. M.; Lalitha, S.; Rabaza, O.; Pérez Calpena, A.; Schöfer, P.; Llamas, M.; Redondo, P.; Ramón Ballesta, A.; Magán Madinabeitia, H.; Rodler, F.; Sota, A.; Marín Molina, J. A.; Sabotta, S.; Stahl, O.; Martínez Rodríguez, H.; Salz, M.; Stock, S.; Naranjo, V.; Sánchez Carrasco, M. A.; Stuber, T.; Sanz Forcada, J.; Johansen, A.; Baroch, D.; Lafarga, M.; Dreizler, S.; Tal Or, L.; Schweitzer, A.; Hagen, H. J.; Guenther, E. W.; Montes, D.; Aceituno, Francisco José; Arroyo Torres, B.; Benítez, D.; Kehr, M.; Béjar, V. J. S.; Zapatero Osorio, M. R.; Yan, F.; Klahr, H.; Nagel, E.; Trifonov, T.; Guàrdia, J.; Guijarro, A.; De Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero, F.; Hintz, D.; Díez Alonso, E.; Colomé, J.; González Hernández, Carmen; Solano, Enrique; Israel Science Foundation (ISF); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Swiss National Science Foundation (SNSF); Deutsches Zentrum für Luft- und Raumfahrt (DLR); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); European Research Council (ERC); Generalitat de Catalunya; Deutsche Forschungsgemeinschaft (DFG); Queen Mary University of London; Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Morales, J. C. [0000-0003-0061-518X]; Mustill, A. J. [0000-0002-2086-3642]; Ribas, I. [0000-0002-6689-0312]; Davies, M. B. [0000-0001-6080-1190]; Bauer, F. F. [0000-0003-1212-5225]; Herrrero, E. [0000-0001-8602-6639]; Rodríguez, E. [0000-0001-6827-9077]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; Luque, R. [0000-0002-4671-2957]; López Santiago, J. [0000-0003-2402-8166]; Perger, M. [0000-0001-7098-0372]; Guenther, E. W. [0000-0002-9130-6747]; Schmitt, J. H. M. M. [0000-0003-2554-9916]; Mordasini, C. [0000-0002-1013-2811]; Aceituno, J. [0000-0003-0487-1105]; Stock, S. [0000-0002-1166-9338]; Lafarga, M. [0000-0002-8815-9416]; Nagel, E. [0000-0002-4019-3631]; Barrado, D. [0000-0002-5971-9242]; Tulloch, S. [0000-0003-0840-8521]; Rosich, A. [0000-0002-9141-3067]; Trifonov, T. [0000-0002-0236-775X]; Bergond, G. [0000-0003-3132-9215]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Kaminski, A. [0000-0003-0203-8208]; Montes, D. [0000-0002-7779-238X]; Cano, J. [0000-0003-1984-5401]; Baroch, D. [0000-0001-7568-5161]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Sabotta, S. [0000-0001-9078-5574]; Ammler-von Eiff, M. [0000-0001-9565-1698]; Chaturvedi, P. [0000-0002-1887-1192]; Anglada Escudé, G. [0000-0002-3645-5977]; Becerril Jarque, S. [0000-0001-9009-1150]; Díez Alonso, E. [0000-0002-5826-9892]; Passegger, V. M. [0000-0002-8569-7243]; Burn, R. [0000-0002-9020-7309]; García Vargas, M. L. [0000-0002-2058-3528]; Amado, P. J. [0000-0002-8388-6040]; Cardona Guillén, C. [0000-0002-2198-4200]; Carro, J. [0000-0002-0838-3603]; Guàrdia, J. [0000-0002-7191-9001]; Abellán, F. J. [0000-0002-5724-1636]; Cifuentes, C. [0000-0003-1715-5087]; Colomé, J. [0000-0002-1678-2241]; Hermelo, I. [0000-0001-9178-694X]; Arroyo Torres, B. [0000-0002-3392-4694]; Emsenhuber, A. [0000-0002-8811-1914]; Fuhrmeister, B. [0000-0001-8321-5514]; Johnson, E. [0000-0003-2260-5134]; Berdiñas, Z. M. [0000-0002-6057-6461]; González Álvarez, E. [0000-0002-4820-2053]; González Cuesta, L. [0000-0002-1241-5508]; González Hernández, J. I. [0000-0002-0264-7356]; Klüter, J. [0000-0002-3469-5133]; Calvo Ortega, R. [0000-0003-3693-6030]; Guijarro, A. [0000-0001-5518-1759]; Lara, L. M. [0000-0002-7184-920X]; Casasayas Barris, N. [0000-0002-2891-8222]; Hintz, D. [0000-0002-5274-2589]; López del Fresno, M. [0000-0002-9479-7780]; Czesla, S. [0000-0002-4203-4773]; De Juan Fernández, E. [0000-0002-9382-4505]; Kehr, M. [0000-0002-7420-7368]; Marín Molina, J. A. [0000-0002-3525-0806]; Galadí Enríquez, D. [0000-0003-4946-5653]; Klutsch, A. [0000-0001-7869-3888]; Labarga, F. [0000-0002-7143-0206]; Martínez Rodríguez, H. [0000-0002-1919-228X]; González Peinado, R. [0000-0002-6658-8930]; Launhardt, R. [0000-0002-8298-2663]; Lizon, J. L. [0000-0001-8928-2566]; Naranjo, V. [0000-0003-0097-1061]; De Guindos, E. [0000-0002-8124-9101]; Magan Madinabeitia, H. [0000-0003-1243-4597]; Aceituno, F. J. [0000-0001-8074-4760]; Manici, L. [0000-0002-9428-8732]; Ofir, A. [0000-0002-9152-5042]; Huke, P. [0000-0001-5913-2743]; Martín, E. [0000-0002-1208-4833]; Rabaza, O. [0000-0003-2766-2103]; Kim, M. [0000-0001-6218-2004]; Marvin, C. J. [0000-0002-2249-2611]; Rodríguez Trinidad, A. [0000-0002-3356-8634]; Lampón, M. [0000-0002-0183-7158]; Nelson, R. [0000-0002-9687-8779]; Nortmann, L. [0000-0001-8419-8760]; Sanz Forcada, J. [0000-0002-1600-7835]; Lodieu, N. [0000-0002-3612-8968]; Pascual Granado, J. [0000-0003-0139-6951]; Pedraz, S. [0000-0003-1346-208X]; Schäfer, S. [0000-0001-8597-8048]; Marfil, E. [0000-0001-8907-4775]; Ramón Ballesta, A. [0000-0002-4323-0610]; Redondo, P. G. [0000-0001-5992-5778]; Schöfer, P. [0000-0002-5969-3708]; Martín Ruiz, S. [0000-0002-9006-7182]; Sadegi, S. [0000-0001-9897-6121]; García Piquer, A. [0000-0002-6872-4262]; Sánchez Carrasco, M. A. [0000-0001-5533-3660]; Stuber, T. [0000-0003-2185-0525]; Moya, A. [0000-0003-1665-5389]; Sarkis, P. [0000-0001-8128-3126]; Vilardell, F. [0000-0003-0441-1504]; Nowak, G. [0000-0002-7031-7754]; Schlecker, M. [0000-0001-8355-2107]; Béjar, V. J. S. [0000-0002-5086-4232]; Pérez Calpena, A. [0000-0001-7361-9240]; Solano, E. [0000-0003-1885-5130]; Sota, A. [https://orcid.org/0000-0002-9404-6952]; Klahr, H. [0000-0002-8227-5467]; Rodler, F. [0000-0003-0650-5723]; Suárez, J. C. [0000-0003-3649-8384]; Tabernero, H. [0000-0002-8087-4298]; Cortés Contreras, M. [0000-0003-3734-9866]; Sánchez López, A. [0000-0002-0516-7956]; Winkler, J. [0000-0003-0568-8820]; Yan, F. [0000-0001-9585-9034]; Reffert, S. [0000-0002-0460-8289]; Sarmiento, L. F. [0000-0002-8475-9705]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of SciencePublicación Acceso Abierto A precise architecture characterization of the π Mensae planetary system(EDP Sciences, 2020-10-01) Damasso, D.; Sozzetti, A; Lovis, C.; Barros, S. C. C.; Sousa, S. G.; Demangeon, O. D. S.; Faria, J. P.; Lillo Box, J.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Zapatero Osorio, M. R.; Amate, M.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Borsa, F.; Bossini, D.; Bourrier, V.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Dekker, H.; Delabre, B.; Di Marcoantonio, P.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lo Curto, G.; Maire, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Riva, M.; Santa Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Agenzia Spaziale Italiana (ASI); Fundação para a Ciência e a Tecnologia (FCT); Australian Research Council (ARC); Istituto Nazionale Astrofisica (INAF); 0000-0003-0987-1593; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The bright star pi Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M-circle plus planet at similar to 0.07 au and a sub-stellar companion on a similar to 2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of pi Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around pi Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s(-1)) allow for a precise retrieval of the Doppler signal induced by pi Men c. The residuals show a root mean square of 1.2 m s(-1), which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than similar to 2 M-circle plus within the orbit of pi Men c). We improve the ephemeris of pi Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of pi Men b with high precision (i(b) =45.8(-1.1)(+1.4) deg). This leads to precise measurement of its absolute mass m(b) = =14.1(-0.4)(+0.5) M-Jup, indicating that pi Men b can be classified as a brown dwarf. Conclusions. The pi Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the pi Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of pi Men b contributes to make the brown dwarf desert a bit greener.Publicación Acceso Abierto A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130)(EDP Sciences, 2021-04-14) Sozzetti, A.; Damasso, M.; Bonomo, A. S.; Alibert, Y.; Sousa, S. G.; Adibekyan, V.; Zapatero Osorio, M. R.; Barros, S. C. C.; Lillo Box, J.; Stassun, K. G.; Winn, J. N.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Allart, R.; Barclay, T.; Bouchy, F.; Cabral, A.; Ciardi, D.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Fausnaugh, M.; Figueira, P.; Haldemann, J.; Jenkins, J. M.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Oshagh, M.; Otegi, J.; Pallé, E.; Poretti, E.; Ricker, G.; Seager, S.; Suárez Mascareño, A.; Twicken, J. D.; Udry, S.; González Hernández, Carmen; Rodríguez Gutiérrez, David; Istituto Nazionale di Astrofisica (INAF); Agenzia Spaziale Italiana (ASI); iss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Commission (EC); European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI) http://dx.doi.org/10.13039/501100011033; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Haldemann, J. [0000-0003-1231-2389]Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by the TESS mission orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period of Pb = 14.3 days. Methods. We used 43 ESPRESSO high-resolution spectra and broad-band photometry information to derive accurate stellar atmospheric and physical parameters of HD 5278. We exploited the TESS light curve and spectroscopic diagnostics to gauge the impact of stellar activity on the ESPRESSO RVs. We performed separate as well as joint analyses of the TESS photometry and the ESPRESSO RVs using fully Bayesian frameworks to determine the system parameters. Results. Based on the ESPRESSO spectra, the updated stellar parameters of HD 5278 are Teff = 6203 ± 64 K, log g = 4.50 ± 0.11 dex, [Fe/H] = −0.12 ± 0.04 dex, M⋆ = 1.126−0.035+0.036 M⊙, and R⋆ = 1.194−0.016+0.017 R⊙. We determine HD 5278 b’s mass and radius to be Mb = 7.8−1.4+1.5 M⊕ and Rb = 2.45 ± 0.05R⊕. The derived mean density, ϱb = 2.9−0.5+0.6 g cm−3, is consistent with the bulk composition of a sub-Neptune with a substantial (~ 30%) water mass fraction and with a gas envelope comprising ~17% of the measured radius. Given the host brightness and irradiation levels, HD 5278 b is one of the best targetsorbiting G-F primaries for follow-up atmospheric characterization measurements with HST and JWST. We discover a second, non-transiting companion in the system, with a period of Pc = 40.87−0.17+0.18 days and a minimum mass of Mc sin ic = 18.4−1.9+1.8 M⊕. We study emerging trends in parameters space (e.g., mass, radius, stellar insolation, and mean density) of the growing population of transiting sub-Neptunes, and provide statistical evidence for a low occurrence of close-in, 10 − 15M⊕ companions around G-F primaries with Teff ≳ 5500 K.Publicación Acceso Abierto Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO(EDP Sciences, 2021-01-22) Borsa, F.; Allart, R.; Casasayas Barris, N.; Tabernero, H. M.; Zapatero Osorio, M. R.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Adibekyan, V.; Bourrier, V.; Demangeon, O. D. S.; Ehrenreich, D.; Pallé, E.; Sousa, S. G.; Lillo Box, J.; Lovis, C.; Micela, G.; Oshagh, M.; Poretti, E.; Sozzetti, A.; Allende Prieto, C.; Alibert, Y.; Amate, M.; Benz, W.; Bouchy, F.; Cabral, A.; Dekker, H.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Genova Santos, R.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Riva, M.; Suárez Mascareño, A.; Udry, S.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Cabral, A. [0000-0002-9433-871X]; Adibekyan, V. [0000-0002-0601-6199]; Santos, N. [0000-0003-4422-2919]; Nunes, N. [0000-0002-3837-6914]; Sozzetti, A. [0000-0002-7504-365X]; Suarez Mascareño, A. [0000-0002-3814-5323]Context. Ultra-hot Jupiters are excellent laboratories for the study of exoplanetary atmospheres. WASP-121b is one of the most studied; many recent analyses of its atmosphere report interesting features at different wavelength ranges. Aims. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in one-telescope mode, and one partial transit taken during the commissioning of the instrument in four-telescope mode. Methods. We take advantage of the very high S/N data and of the extreme stability of the spectrograph to investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. We pay particular attention to the removal of instrumental effects, and stellar and telluric contamination. The transmission spectrum is investigated through single-line absorption and cross-correlation with theoretical model templates. Results. By analyzing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter–McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052 ± 0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum thanks to the quality of our ESPRESSO data. We detected significant absorption in the transmission spectrum for Na, H, K, Li, Ca II, and Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of ~0.2% detected at the 6σ level. With the cross-correlation technique we confirmed the presence of Fe I, Fe II, Cr I, and V I. Hα and Ca II are present up to very high altitudes in the atmosphere (~1.44 Rp and ~2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.Publicación Acceso Abierto Broadband transmission spectroscopy of HD 209458b with ESPRESSO: evidence for Na, TiO, or both(EDP Sciences, 2020-12-01) Santos, N. C.; Cristo, E.; Demangeon, O. D. S.; Oshagh, M.; Allart, R.; Barros, S. C. C.; Borsa, F.; Bourrier, V.; Casasayas Barris, N.; Ehrenreich, D.; Faria, J. P.; Figueira, P.; Martins, J. H. C.; Micela, G.; Pallé, E.; Sozzetti, A.; Tabernero, H.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Bouchy, F.; Cabral, A.; Dekker, H.; Di Marcoantonio, P.; D´Odorico, V.; Dumusque, X.; Lavie, B.; Lo Curto, G.; Lovis, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Poretti, E.; Rivas, M.; Sousa, S. G.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); European Research Council (ERC); Agencia Estatal de Investigación (AEI); 0000-0003-4422-2919; 0000-0001-5992-7589; 0000-0001-7918-0355; 0000-0002-0715-8789; 0000-0003-0987-1593Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field. Aims. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD 209458b, to probe the broadband transmission optical spectrum of the planet. Methods. We applied the chromatic Rossiter–McLaughin method to derive the transmission spectrum of HD 209458b. We compared the results with previous HST observations and with synthetic spectra. Results. We recover a transmission spectrum of HD 209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Conclusions. Using the chromatic Rossiter–McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets.Publicación Acceso Abierto CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions(EDP Sciences, 2020-10-12) Cifuentes, C.; Caballero, J. A.; Cortés Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz Forcada, J.; Schweitzer, A.; Seifert, W.; Solano, Enrique; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); 0000-0003-1715-5087; 0000-0002-7349-1387; 0000-0003-3734-9866; 0000-0002-7779-238X; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The relevance of M dwarfs in the search for potentially habitable Earth-sized planets has grown significantly in the last years. Aims. In our on-going effort to comprehensively and accurately characterise confirmed and potential planet-hosting M dwarfs, in particular for the CARMENES survey, we have carried out a comprehensive multi-band photometric analysis involving spectral energy distributions, luminosities, absolute magnitudes, colours, and spectral types, from which we have derived basic astrophysical parameters. Methods. We have carefully compiled photometry in 20 passbands from the ultraviolet to the mid-infrared, and combined it with the latest parallactic distances and close-multiplicity information, mostly from Gaia DR2, of a sample of 2479 K5 V to L8 stars and ultracool dwarfs, including 2210 nearby, bright M dwarfs. For this, we made extensive use of Virtual Observatory tools. Results. We have homogeneously computed accurate bolometric luminosities and effective temperatures of 1843 single stars, derived their radii and masses, studied the impact of metallicity, and compared our results with the literature. The over 40 000 individually inspected magnitudes, together with the basic data and derived parameters of the stars, individual and averaged by spectral type, have been made public to the astronomical community. In addition, we have reported 40 new close multiple systems and candidates (ρ < 3.3 arcsec) and 36 overluminous stars that are assigned to young Galactic populations. Conclusions. In the new era of exoplanet searches around M dwarfs via transit (e.g. TESS, PLATO) and radial velocity (e.g. CARMENES, NIRPS+HARPS), this work is of fundamental importance for stellar and therefore planetary parameter determination. © ESO 2020.Publicación Acceso Abierto Characterization of the K2-38 planetary system Unraveling one of the densest planets known to date(EDP Sciences, 2020-09-14) Toledo Padrón, B.; Lovis, C.; Suárez Mascareño, A.; Barros, S. C. C.; Sozzetti, A.; Bouchy, F.; Zapatero Osorio, M. R.; Rebolo, R.; Cristiani, S.; Pepe, F. A.; Santos, N. C.; Sousa, S. G.; Tabernero, H. M.; Lillo Box, J.; Bossini, D.; Adibekyan, V.; Allart, R.; Damasso, M.; D´Odorico, V.; Figueira, P.; Lavie, B.; Lo Curto, G.; Mehner, A.; Micela, G.; Modigliani, A.; Nunes, N. J.; Pallé, E.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benatti, S.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Deiries, S.; Dekker, H.; Delabre, B.; Demangeon, O. D.; Di Marcoantonio, P.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Knudstrup, J.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Molaro, P.; Monteiro, M. J. P. F. G.; Monteiro, M. A.; Moschetti, M.; Mueller, E.; Oggioni, L.; Oliveira, A.; Rivas, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Fundacion La Caixa; Swiss National Science Foundation (SNSF); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Ministerio de Ciencia e Innovación (MICINN); 0000-0001-8160-5076; 0000-0003-0987-1593; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V similar to 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with P-b = 4.01593 +/- 0.00050 d and P-c = 10.56103 +/- 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, T-eff = 5731 +/- 66, log g = 4.38 +/- 0.11 dex, and [Fe/H] = 0 :26 +/- 0.05 dex, and thus the mass and radius of K2-38, M-star = 1.03(-0.02)(+0.04) M-circle plus and R-circle plus = 1.06+0:09 0:06 R-circle plus. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with R-P = 1.54 +/- 0.14 R-circle plus and M-p = 7.3(-1.0)(+1:1) M-circle plus, and K2-38c as a sub-Neptune with RP = 2.29 +/- 0.26 R-circle plus and M-p = 8.3(-1.3)(+1:3) M (circle plus). Combining the radius and mass measurements, we derived a mean density of rho(p) = 11.0(-2.8)(+4:1) g cm(-3) for K2-38b and rho(p) = 3.8+1:8 1:1 g cm(-3) for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity.Publicación Acceso Abierto ESPRESSO at VLT On-sky performance and first results(EDP Sciences, 2021-01-19) Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Cabral, A.; Di Marcoantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; Mayor, M.; Mégevand, D.; Molaro, P.; Riva, M.; Zapatero Osorio, M. R.; Amate, M.; Manescau, A.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Barros, S. C. C.; Benz, W.; Bianco, A.; Borsa, F.; Bourrier, V.; Bouchy, F.; Broeg, C.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Damasso, M.; Deiries, S.; Delabre, B.; Demangeon, O. D. S.; Dumusque, X.; Ehrenreich, D.; Faria, J. P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J. L.; Maire, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Santana Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Sozzetti, A.; Sousa, S. G.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Australian Research Council; 0000-0002-9433-871X; 0000-0003-0513-8116; 0000-0002-4339-0550; 0000-0002-6728-244X; 0000-0003-2434-3625; 0000-0002-7504-365X; 0000-0002-7040-5498; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. ESPRESSO is the new high-resolution spectrograph of ESO’s Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims. We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s−1 during a single night and 50 cm s−1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s−1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields.Publicación Acceso Abierto ESPRESSO high-resolution transmission spectroscopy of WASP-76 b(EDP Sciences, 2021-02-19) Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas Barris, N.; Demangeon, O. D. S.; Ehrenreich, D.; Lillo Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, N. C.; Pepe, F.; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D´Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Genova Santos, R.; Hojjatpanah, S.; Lo Curto, G.; Lavie, B.; Martins, C. J. A. P.; Martins, J. H. C.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Poretti, E.; Seidel, J. V.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Aliverti, M.; Affolter, M.; Alves, D.; Amate, M.; Ávila, G.; Bandy, T.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Conconi, P.; Coelho, J.; Cumani, C.; Deiries, S.; Dekker, H.; Delabre, B.; Fragoso, A.; Genoni, M.; Genolet, L.; Hughes, I.; Knudstrup, J.; Kerber, F.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Di Marcoantonio, P.; Mégevand, D.; Monteiro, M.; Moschetti, M.; Mueller, E.; Modigliani, A.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Iwert, O.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Istituto Nazionale di Astrofisica (INAF); Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. [0000-0003-0513-8116]; Coelho, F. M. [0000-0002-4339-0550]; Faria, J. [0000-0002-6728-244X]; Santos, N. [0000-0003-4422-2919]Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.Publicación Acceso Abierto ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107−5240.(EDP Sciences, 2020-01-22) Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert, Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova, R.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe, F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Zapatero Osorio, M. R.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); European Research Council (ERC); Molaro, P. [0000-0002-0571-4163]; Monaco, L. [0000-0002-3148-9836]; Nunes, N. J. [0000-0002-3837-6914]; Suarez Mascareño, A. [0000-0002-3814-5323]; Aguado, D. [0000-0001-5200-3973]; González Hernández, J. I. [0000-0002-0264-7356]; Adibekyan, V. [0000-0002-0601-6199]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Figueira, P. [0000-0001-8504-283X]; Sozzetti, A. [0000-0002-7504-365X]; Santos, N. [0000-0003-4422-2919]; Cupani, G. [0000-0002-6830-9093]; Martins, C. J. A. P. [0000-0002-4886-9261]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The vast majority of the known stars of ultra low metallicity ([Fe/H] < −4.5) are known to be enhanced in carbon, and belong to the “low-carbon band” (A(C) = log(C/H)+12 ≤ 7.6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metal-poor star discovered, HE 0107−5240, is also enhanced in carbon and belongs to the “low-carbon band”. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer from a former AGB companion. Theoretically, low-mass ratios in binary systems are much more favoured amongst Pop III stars than they are amongst solar-metallicity stars. Any constraint on the mass ratio of a system of such low metallicity would shed light on the star formation mechanisms in this metallicity regime. Aims. We acquired one high precision spectrum with ESPRESSO in order to check the reality of the radial velocity variations. In addition we analysed all the spectra of this star in the ESO archive obtained with UVES to have a set of homogenously measured radial velocities. Methods. The radial velocities were measured using cross correlation against a synthetic spectrum template. Due to the weakness of metallic lines in this star, the signal comes only from the CH molecular lines of the G-band. Results. The measurement obtained in 2018 from an ESPRESSO spectrum demonstrates unambiguously that the radial velocity of HE 0107−5240 has increased from 2001 to 2018. Closer inspection of the measurements based on UVES spectra in the interval 2001–2006 show that there is a 96% probability that the radial velocity correlates with time, hence the radial velocity variations can already be suspected from the UVES spectra alone. Conclusions. We confirm the earlier claims of radial velocity variations in HE 0107−5240. The simplest explanation of such variations is that the star is indeed in a binary system with a long period. The nature of the companion is unconstrained and we consider it is equally probable that it is an unevolved companion or a white dwarf. Continued monitoring of the radial velocities of this star is strongly encouraged.Publicación Acceso Abierto Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant(EDP Sciences, 2021-02-19) Schmidt, T. M.; Molaro, P.; Murphy, M. T.; Lovis, C.; Cupani, G.; Cristiani, S.; Pepe, F. A.; Rebolo, R.; Santos, N. C.; Abreu, M.; Adibekyan, V.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Baldini, V.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Coretti, I.; D´Odorico, V.; Di Marcoantonio, P.; Ehrenreich, D.; Figueira, P.; Genoni, M.; Génova Santos, R.; Kerber, F.; Londoni, M.; Leite, A. C. O.; Louis Lizon, J.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M.; Monteiro, M. J. P. F. G.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Redaelli, E.; Riva, M.; Santos, P.; Sosnowska, D.; Sousa, S. G.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Zapatero Osorio, M. R.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Australian Research Council (ARC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Schmidt, T. M. [0000-0002-4833-7273]; Molaro, P. [0000-0002-0571-4163]; Murphy, M. T. [0000-0002-7040-5498]; Cristiani, S. [0000-0002-2115-5234]; Pepe, F. A. [0000-0002-9815-773X]; Rebolo, R. [0000-0003-3767-7085]Observations of metal absorption systems in the spectra of distant quasars allow one to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph ESPRESSO, which was recently installed at the VLT. In preparation of the fundamental physics related part of the ESPRESSO GTO program, we present a thorough assessment of the ESPRESSO wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, which is based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Pérot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24 m s−1. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of ESPRESSO with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the 10−6 level can be obtained with ESPRESSO without being limited by wavelength calibration systematics.Publicación Acceso Abierto Gliese 49: activity evolution and detection of a super-Earth A HADES and CARMENES collaboration(EDP Sciences, 2019-04-24) Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.; Affer, L.; Azzaro, M.; Amado, P. J.; Anglada Escudé, G.; Baroch, D.; Barrado, D.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Cortés Contreras, M.; Damasso, M.; Dreizler, S.; González Cuesta, L.; Guenther, E. W.; Henning, T.; Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Leto, G.; López González, M. J.; Maldonado, J.; Micela, G.; Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.; Rodríguez, E.; Rodríguez López, C.; Schimitt, J. H. M. M.; Sozzetti, A.; Suárez Mascareño, A.; Toledo Padrón, B.; Zanmar Sánchez, R.; Zapatero Osorio, M. R.; Zechmeister, M.; González Hernández, Carmen; Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Agencia Estatal de Investigación (AEI); 0000-0001-7098-0372; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Small planets around low-mass stars often show orbital periods in a range that corresponds to the temperate zones of their host stars which are therefore of prime interest for planet searches. Surface phenomena such as spots and faculae create periodic signals in radial velocities and in observational activity tracers in the same range, so they can mimic or hide true planetary signals. Aims. We aim to detect Doppler signals corresponding to planetary companions, determine their most probable orbital configurations, and understand the stellar activity and its impact on different datasets. Methods. We analyzed 22 yr of data of the M1.5 V-type star Gl 49 (BD+61 195) including HARPS-N and CARMENES spectrographs, complemented by APT2 and SNO photometry. Activity indices are calculated from the observed spectra, and all datasets are analyzed with periodograms and noise models. We investigated how the variation of stellar activity imprints on our datasets. We further tested the origin of the signals and investigate phase shifts between the different sets. To search for the best-fit model we maximize the likelihood function in a Markov chain Monte Carlo approach. Results. As a result of this study, we are able to detect the super-Earth Gl 49b with a minimum mass of 5.6 M⊕. It orbits its host star with a period of 13.85 d at a semi-major axis of 0.090 au and we calculate an equilibrium temperature of 350 K and a transit probability of 2.0%. The contribution from the spot-dominated host star to the different datasets is complex, and includes signals from the stellar rotation at 18.86 d, evolutionary timescales of activity phenomena at 40–80 d, and a long-term variation of at least four years.Publicación Acceso Abierto HORuS transmission spectroscopy of 55 Cnc e(Oxford Academics: Blackwell Publishing, 2020-08-26) Tabernero, H. M.; Allende Prieto, C.; Zapatero Osorio, M. R.; Del Burgo, C.; García López, Ramón; Rebolo, R.; Abril Abril, M.; Calvo Tovar, J.; Díaz Torres, A.; Fernández Izquierdo, P.; Gómez Reñasco, M. F.; Gracia Témich, F.; Joven, E.; Peñate Castro, J.; Santana Tschudi, S.; Tenegi, F.; Viera Martín, H. D.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Mexican National Council on Science and Technology (CONACYT); Ministerio de Economía y Competitividad (MINECO); Tabernero, H. M. [https://orcid.org/0000-0002-8087-4298]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The High Optical Resolution Spectrograph (HORuS) is a new high-resolution echelle spectrograph available on the 10.4-m Gran Telescopio Canarias (GTC). We report on the first HORuS observations of a transit of the super-Earth planet 55 Cnc e. We investigate the presence of Na I and Hα in its transmission spectrum and explore the capabilities of HORuS for planetary transmission spectroscopy. Our methodology leads to residuals in the difference spectrum between the in-transit and out-of-transit spectra for the Na I doublet lines of (3.4 ± 0.4) × 10−4, which sets an upper limit to the detection of line absorption from the planetary atmosphere that is one order of magnitude more stringent that those reported in the literature. We demonstrate that we are able to reach the photon-noise limit in the residual spectra using HORuS to a degree that we would be able to easily detect giant planets with larger atmospheres. In addition, we modelled the structure, chemistry, and transmission spectrum of 55 Cnc e using state-of-the-art open source tools.Publicación Acceso Abierto K2-111: an old system with two planets in near-resonance.(Oxford Academics: Blackwell Publishing, 2020-10-27) Mortier, A.; Zapatero Osorio, M. R.; Malavolta, L.; Alibert, Y.; Rice, K.; Lillo Box, J.; Vanderburg, A.; Oshagh, M.; Buchhave, L. A.; Adibekyan, V.; Delgado Mena, E.; López Morales, M.; Charbonneau, D.; Sousa, S. G.; Lovis, C.; After, L.; Allende Prieto, C.; Barros, S. C. C.; Benatti, S.; Bonomo, A. S.; Boschin, W.; Bouchy, F.; Cabral, A.; Collier Cameron, A.; Cosentino, R.; Cristiani, S.; Demangeon, O. D. S.; Di Marcantonio, P.; D´Odorico, V.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fiorenzano, A. F. M.; Ghedina, A.; Haldemann, J.; Harutyunyan, A.; Haywood, R. D.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Maldonado, J.; Menescau, A.; Martins, C. J. A. P.; Mayor, M.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Molinari, E.; Nunes, N. J.; Pepe, F. A.; Pallé, E.; Phillips, D.; Piotto, G.; Pinamonti, M.; Poretti, E.; Rivas, M.; Rebolo, R.; Santos, N. C.; Sasselov, D.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; West, R. G.; Watson, C. A.; Wilson, T. G.; González Hernández, Carmen; Science and Technology Facilities Council (STFC); Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundação para a Ciência e a Tecnologia (FCT); National Aeronautics and Space Administration (NASA); European Research Council (ERC); 0000-0002-9433-871X; 0000-0002-3814-5323; 0000-0002-0571-4163; 0000-0003-4434-2195; 0000-0003-1605-5666; 0000-0001-7246-5438; 0000-0003-2434-3625; 0000-0003-1231-2389; 0000-0003-1784-1431; 0000-0002-7504-365X; 0000-0002-0601-6199; 0000-0001-8749-1962; 0000-0002-8863-7828; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H]=-0.46), but alpha-enhanced ([alpha/Fe]=0.27), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT, shows that the transiting planet, K2-111 b, orbits with a period P-b = 5.3518 +/- 0.0004 d and has a planet radius of 1.82(-0.09)(+0.11) R-circle plus and a mass of 5.29(-0.77)(+0.76) M-circle plus, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111 b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111 c, with an orbital period of 15.6785 +/- 0.0064 d, orbiting in near-3:1 mean motion resonance with the transiting planet, and a minimum planet mass of 11.3 +/- 1.1M(circle plus). Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.Publicación Acceso Abierto MuSCAT2 multicolour validation of TESS candidates: an ultra-short-period substellar object around an M dwarf(EDP Sciences, 2020-01-03) Parviainen, H.; Pallé, E.; Zapatero Osorio, M. R.; Montañés Rodríguez, P.; Murgas Alcaino, F.; Narita, N.; Hidalgo Soto, D.; Béjar, V. J. S.; Korth, J.; Monelli, M.; Casasayas Barris, N.; Crouzet, N.; De Leon, J. P.; Fukui, A.; Klagyivik, P.; Kusakabe, N.; Luque, R.; Mori, M.; Nishiumi, T.; Prieto Arranz, J.; Tamura, M.; Watanabe, N.; Burke, C. J.; Charbonneau, D.; Collins, K. A.; Collins, K. I.; Conti, D.; García Soto, A.; Jenkins, J. S.; Jenkins, J. M.; Levine, A.; Li, J.; Rinehart, S.; Seager, S.; Tenenbaum, P.; Ting, E. B.; Vanderspek, R.; Vezie, M.; Winn, J. N.; HERRERA HERNÁNDEZ, ALEJANDRO; Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Japan Society for the Promotion of Science (JSPS); Japan Science and Technology Agency (JST); Parvianen, H. [0000-0001-5519-1391]; Monelli, M. [0000-0001-5292-6380]; Korth, J. [0000-0002-0076-6239]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Luque, R. [0000-0002-4671-2957]; Kusakabe, N. [0000-0001-9194-1268]; Collins, K. [0000-0003-2781-3207]; García Soto, A. [0000-0001-9828-3229]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. We report the discovery of TOI 263.01 (TIC 120916706), a transiting substellar object (R = 0.87 RJup) orbiting a faint M3.5 V dwarf (V = 18.97) on a 0.56 d orbit. Aims. We setout to determine the nature of the Transiting Exoplanet Survey Satellite (TESS) planet candidate TOI 263.01 using ground-based multicolour transit photometry. The host star is faint, which makes radial-velocity confirmation challenging, but the large transit depth makes the candidate suitable for validation through multicolour photometry. Methods. Our analysis combines three transits observed simultaneously in r′, i′, and zs bands usingthe MuSCAT2 multicolour imager, three LCOGT-observed transit light curves in g′, r′, and i′ bands, a TESS light curve from Sector 3, and a low-resolution spectrum for stellar characterisation observed with the ALFOSC spectrograph. We modelled the light curves with PYTRANSIT using a transit model that includes a physics-based light contamination component, allowing us to estimate the contamination from unresolved sources from the multicolour photometry. Using this information we were able to derive the true planet–star radius ratio marginalised over the contamination allowed by the photometry.Combining this with the stellar radius, we were able to make a reliable estimate of the absolute radius of the object. Results. The ground-based photometry strongly excludes contamination from unresolved sources with a significant colour difference to TOI 263. Furthermore, contamination from sources of the same stellar type as the host is constrained to levels where the true radius ratio posterior has a median of 0.217 and a 99 percentile of0.286. The median and maximum radius ratios correspond to absolute planet radii of 0.87 and 1.41 RJup, respectively,which confirms the substellar nature of the planet candidate. The object is either a giant planetor a brown dwarf (BD) located deep inside the so-called “brown dwarf desert”. Both possibilities offer a challenge to current planet/BD formation models and make TOI 263.01 an object that merits in-depth follow-up studies.Publicación Restringido Nightside condensation of iron in an ultrahot giant exoplanet(Nature Research Journals, 2020-03-11) Ehrenreich, D.; Lovis, C.; Allart, R.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Borsa, F.; Demangeon, O. D. S.; Dumusque, X.; Casasayas Barris, N.; Séngrasan, D.; Sousa, S.; Abreu, M.; Adibekyan, V.; Affolter, M.; Allende Prieto, C.; Alibert, Y.; Aliverti, M.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Bolmont, É.; Bouchy, F.; Bourrier, V.; Broeg, C.; Cabral, A.; Calderone, G.; Pallé, E.; Cegla, H. M.; Cirami, R.; Coelho, João M. P.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Dekker, H.; Delabre, B.; Deiries, S.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Harada, N.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lendl, M.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M.; Monteiro, M. A.; Moschetti, M.; Muller, N.; Nunes, N.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia Milla, A.; Seidel, J. V.; Sosnowska, D.; Sozzetti, A.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Suárez Mascareño, A. [0000-0002-3814-5323]; Abreu, M. [0000-0002-0716-9568]; João M. P. Coelho. [0000-0002-4339-0550]; Monteiro, M. J. [0000-0003-0513-8116]; Tabernero, H. [0000-0002-8087-4298]; Nunes, N. J. [0000-0002-3837-6914]; Cabral, A. [0000-0002-9433-871X]; Molaro, P. [0000-0002-0571-4163]; Redaelli, E. M. A. [0000-0001-8185-2122]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Castro Alves, D. [0000-0001-7026-2514]; Seidel, J. V. [0000-0002-7990-9596]; Martins, C. J. A. P. [0000-0002-4886-9261]; Adibekyan, V. [0000-0002-0601-6199]; Zerbi, F. M. [0000-0002-9996-973X]; Monteiro, M. [0000-0001-5644-0898]; Mehner, A. [0000-0002-9564-3302]; Santos, N. [0000-0003-4422-2919]; Cegla, H. [0000-0001-8934-7315]; Sozzetti, A. [0000-0002-7504-365X]; Allart, R. [0000-0002-1199-9759]; Landoni, M. [0000-0001-5570-5081]; Coretti, I. [0000-0001-9374-3249]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Ultrahot giant exoplanets receive thousands of times Earth’s insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3,4,5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10,11,12,13,14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (‘evening’) and night-to-day (‘morning’) terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.Publicación Acceso Abierto Revisiting Proxima with ESPRESSO(EDP Sciences, 2020-07-13) Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas Alcaino, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Delabre, B.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Lillo Box, J. [0000-0003-3742-1987]; Faria, J. [0000-0002-6728-244X]; Nunes, N. J. [0000-0002-3837-6914]; Molaro, P. [0000-0002-0571-4163]; Mascareño, A. S. [0000-0002-3814-5323]; Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. P. F. G. [0000-0003-0513-8116]; Redaelli, E. M. A. [0000-0001-8185-2122]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Abreu, M. [0000-0002-0716-9568]; Coretti, I. [0000-0001-9374-3249]; Sozzetti, A. [0000-0002-7504-365X]; Adibekyan, V. [0000-0002-0601-6199]; Monteiro, M. [0000-0001-5644-0898]; Damasso, M. [0000-0001-9984-4278]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s−1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M⊕. In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M⊕. We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s−1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M⊕. We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M⊕ at periods shorter than 50 days.Publicación Acceso Abierto Six transiting planets and a chain of Laplace resonances in TOI-178(EDP Sciences, 2021-05-06) Leleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J. B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Gillen, E.; Alonso, R.; Pepe, F. A.; Correia, A. C. M.; Alves, D.; Cooke, B. F.; Cristiani, S.; Damasso, M.; Simon, A. E.; Angerhausen, D.; Günther, M. N.; Beck, M.; Queloz, D.; Dumusque, X.; Beck, T.; Di Marcoantonio, P.; Ehrenreich, D.; Erikson, A.; Olofsson, G.; Bourrier, V.; Reimers, C.; Futyan, D.; Boué, G.; Fridlund, M.; Gandolfi, D.; García Muñoz, Antonio; Peter, G.; Burleigh, M. R.; Bárczy, T.; Guillon, M.; Goad, M. R.; Cabrera, J.; Chamberlain, S.; Moyaro, M.; Davies, M. B.; Thomas, N.; Isaak, K.; Deleuil, M.; Heng, K.; Jehin, E.; Jenkins, J. S.; Anglada Escudé, G.; Pedersen, P. P.; Figueira, P.; Verrecchia, F.; Lecavelier des Etangs, A.; Fortier, A.; Lam, K.; Lendl, M.; Lillo Box, J.; Sousa, S. G.; García, L. J.; Osborn, Hugh P.; Gill, S.; Maxted, P. F. L.; McCormac, J.; Mehner, A.; Tilbrook, R. H.; Guedel, M.; Nunes, N. J.; Oshagh, M.; Ottensamer, R.; Charnoz, S.; Haldemann, J.; Sebastian, D.; Jordán, A.; Bekkelien, A.; Piotto, G.; Kiss, L.; Persson, C. M.; Polenta, G.; Pollacco, D.; Acton, J. S.; Lo Curto, G.; Brandeker, A.; Rando, N.; Magrin, D.; Ragazzoni, R.; Ratti, F.; Rauer, H.; Barrado, D.; Micela, G.; Molaro, P.; Ribas, I.; Santos, N. C.; Scandariato, G.; Billot, N.; Murray, C. A.; Zapatero Osorio, M. R.; Pagano, I.; Demory, B. O.; Sozzetti, A.; Pallé, E.; Smith, A. M. S.; Steller, M.; Suárez Mascareño, A.; Henderson, B.; Anderson, D. R.; Poretti, E.; Fossati, L.; Triaud, A.; Pozuelos, F. J.; Thompson, S.; Turner, O.; Udry, S.; Corral Van Damme, C.; Raynard, L.; Adibekyan, V.; Rebolo, R.; Vines, J. I.; Walton, N. A.; West, R. G.; Di Persio, G.; Schneider, J.; Delrez, L.; Allart, R.; Allende Prieto, C.; Nascimbeni, V.; Sestovic, M.; Cameron, A. C.; Szabó, G. M.; Kristiansen, M. H.; Barros, S. C. C.; Ségransan, D.; Asquier, J.; Baumjohann, W.; Bayliss, D.; Demangeon, O. D. S.; Van Grootel, V.; Martins, C. J. A. P.; Bonfanti, A.; Venus, H.; Benz, W.; Bonfils, X.; Bouchy, F.; Hogan, A. E.; Wheatley, P. J.; Wolter, D.; Broeg, C.; Buder, M.; Burdanov, A.; Lavie, B.; González Hernández, Carmen; Alvarez, M. [0000-0002-6786-2620]; Carrasco Martínez, J. M. [0000-0002-3029-5853]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth’s density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.Publicación Acceso Abierto The atmosphere of HD 209458b seen with ESPRESSO No detectable planetary absorptions at high resolution(EDP Sciences, 2021-03-02) Casasayas Barris, N.; Pallé, E.; Strangret, M.; Bourrier, V.; Tabernero, H. M.; Yan, F.; Borsa, F.; Allart, R.; Zapatero Osorio, M. R.; Lovis, C.; Sousa, S. G.; Chen, G.; Oshagh, M.; Santos, N. C.; Pepe, F.; Rebolo, R.; Molaro, P.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Bouchy, F.; Demangeon, O. D. S.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Génova Santos, R.; Lavie, B.; Lillo Box, J.; Lo Curto, G.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Nunes, N. J.; Poretti, E.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; National Natural Science Foundation of China (NSFC); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); Yan, F. [0000-0001-9585-9034]; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, Na I, Mg I, Fe I, Fe II, Ca I, V I, Hα, and K I. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported Na I, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum (~1700 at 590 nm) allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs Different roads to radii and masses of the target stars(EDP Sciences, 2019-05-14) Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar, V. J. S.; Cortés Contreras, M.; Caballero, J. A.; Del Burgo, C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Tabernero, H. M.; Zechmeister, M.; Solano, Enrique; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Aims. We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R > 80 000) spectroscopic survey has been used to derive these fundamental stellar parameters. Methods. We derived the radii using Stefan–Boltzmann’s law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Results. Between spectral types M0 V and M7 V our radii cover the range 0.1 R⊙ < R < 0.6 R⊙ with an error of 2–3% and our masses cover 0.09 ℳ⊙ < ℳ< 0.6ℳ⊙ with an error of 3–5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.