Examinando por Autor "Wyrzykowski, L."
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto All-sky visible and near infrared space astrometry(Springer Link, 2021-03-11) Hobbs, D.; Brown, Anthony; Hog, E.; Jordi, C.; Kawata, D.; Tanga, P.; Klioner, S. A.; Sozzetti, A.; Wyrzykowski, L.; Walton, N.; Vallenari, A.; Makarov, V.; Rybizki, J.; Jiménez Esteban, F. M.; Caballero, J. A.; McMillan, P. J.; Secrest, N.; Mor, R.; Andrews, J. J.; Zwitter, T.; Chiappini, C.; Fynbo, J. P. U.; Ting, Y. S.; Hestroffer, D.; Lindegren, L.; McArthur, B.; Gouda, N.; Moore, A.; González, O. A.; Vaccari, M.; Hobbs, D. [0000-0002-2696-1366]; Brown, A. [0000-0002-7419-9679]; Sozzetti, A. [0000-0002-7504-365X]; Secrest, N. [0000-0002-4902-8077]The era of all-sky space astrometry began with the Hipparcos mission in 1989 and provided the first very accurate catalogue of apparent magnitudes, positions, parallaxes and proper motions of 120 000 bright stars at the milliarcsec (or milliarcsec per year) accuracy level. Hipparcos has now been superseded by the results of the Gaia mission. The second Gaia data release contained astrometric data for almost 1.7 billion sources with tens of microarcsec (or microarcsec per year) accuracy in a vast volume of the Milky Way and future data releases will further improve on this. Gaia has just completed its nominal 5-year mission (July 2019), but is expected to continue in operations for an extended period of an additional 5 years through to mid 2024. Its final catalogue to be released ∼ 2027, will provide astrometry for ∼ 2 billion sources, with astrometric precisions reaching 10 microarcsec. Why is accurate astrometry so important? The answer is that it provides fundamental data which underpin much of modern observational astronomy as will be detailed in this White Paper. All-sky visible and Near-InfraRed (NIR) astrometry with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nearly every branch of astronomy while also providing a dense and accurate visible-NIR reference frame needed for future astronomy facilities.Publicación Acceso Abierto Electromagnetic counterparts to gravitational wave events from Gaia(Oxford Academics: Blackwell Publishing, 2020-02-13) Kostrzewa Rutkowska, Z.; Jonker, P. G.; Hodgkin, S. T.; Eappachen, D.; Harrison, D. L.; Koposov, S. E.; Rixon, G.; Wyrzykowski, L.; Yoldas, A.; Breedt, E.; Delgado, A.; Van Leeuwen, M.; Wevers, T.; Burgess, P. W.; De Angeli, D.; Evans, D. W.; Osborne, Paul; Riello, M.; European Research Council (ERC); National Science Centre, Poland (NCN); European Commission (EC); National Aeronautics and Space Administration (NASA); Koposov, S. E. [0000-0003-2644-135X]; Harrison, D. [0000-0001-8687-6588]; Wyrzykowski, L. [0000-0002-9658-6151]; Koposov, S. [0000-0003-2644-135X]; Breedt, E. [0000-0001-6180-3438]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The recent discoveries of gravitational wave events and in one case also its electromagnetic (EM) counterpart allow us to study the Universe in a novel way. The increased sensitivity of the LIGO and Virgo detectors has opened the possibility for regular detections of EM transient events from mergers of stellar remnants. Gravitational wave sources are expected to have sky localization up to a few hundred square degrees, thus Gaia as an all-sky multi-epoch photometric survey has the potential to be a good tool to search for the EM counterparts. In this paper, we study the possibility of detecting EM counterparts to gravitational wave sources using the Gaia Science Alerts system. We develop an extension to current used algorithms to find transients and test its capabilities in discovering candidate transients on a sample of events from the observation periods O1 and O2 of LIGO and Virgo. For the gravitational wave events from the current run O3, we expect that about 16 (25) per cent should fall in sky regions observed by Gaia 7 (10) d after gravitational wave. The new algorithm will provide about 21 candidates per day from the whole sky.Publicación Acceso Abierto Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry(EDP Sciences, 2021-04-28) Klioner, S. A.; Mignard, F.; Lindegren, L.; Bastian, U.; McMillan, P. J.; Hernández, J.; Hobbs, D.; Ramos Lerate, M.; Biermann, M.; Bombrun, A.; De Torres, A.; Pailler, F.; Carlucci, T.; Castellani, M.; Carrasco, J. M.; Wyrzykowski, L.; Barbato, D.; Smart, R. L.; Reylé, C.; Chemin, L.; Evans, D. W.; Siddiqui, H. I.; Caffau, E.; Thuillot, W.; Chiavassa, A.; Comoretto, G.; Sarasso, M.; Cornez, T.; Babusiaux, C.; Crifo, F.; Dapergolas, A.; Crowley, C.; Janßen, Katja; Altmann, M.; Lebzelter, T.; Millar, N. R.; Fouron, C.; Charlot, P.; Molinaro, R.; Bertone, S.; Marchal, O.; Bouquillon, S.; Salgado, J; Lanzafame, A. C.; De Teodoro, P.; García Torres, M.; Rybicki, K. A.; Liao, S.; Delgado, A.; Granvik, M.; Souchay, J.; Buzzi, R.; Cowell, S.; Tauran, G.; Jordan, S.; Siltala, L.; Dolding, C.; Zhao, H.; Jonker, P. G.; Enke, H.; Julbe, F.; Sciacca, E.; Fedorets, G.; Faigler, S.; Panahi, A.; Rixon, G.; Livanou, E.; Weiler, M.; Del Peloso, E. F.; Juaristi Campillo, J.; Marcos Santos, M. M. S.; Bakker, J.; Hilger, T.; Franke, F.; Unger, N.; Garabato, D.; Teyssier, D.; Fouesneau, M.; Souami, D.; Nienartowicz, K.; Gavras, P.; Eyer, L.; Zurbach, C.; Gilmore, G.; Szegedi Elek, E.; Gómez, A.; Romero Gómez, M.; Musella, I.; Royer, F.; Licata, E.; Katz, D.; Fabre, C.; Szabados, L.; Hutton, A.; Viala, Y.; Haywood, M.; Mints, A.; Mowlavi, N.; Lindstrom, H. E. P.; Anglada Varela, E.; Holland, G.; Jansen, F.; Jasniewicz, G.; Haigron, R.; Seabroke, G. M.; Figueras, F.; Voutsinas, S.; Khanna, S.; Hauser, M.; Moitinho, A.; Busso, G.; Kochoska, A.; Kordopatis, G.; Guiraud, J.; Le Fustec, Y.; Gerlach, E.; Lecoeur Taibi, I.; Jordi, C.; Leccia, S.; Raiteri, C. M.; Barros, M.; Sanna, N.; Pourbaix, D.; Kervella, P.; Schultheis, M.; Garofalo, A.; Prusti, T.; Girona, S.; Madrero Pardo, P.; Ducourant, C.; Zwitter, T.; Morris, D.; Walton, N. A.; Marchant, J. M.; Pagani, C.; Gracia Abril, G.; Guy, L. P.; Lebreton, Y.; Blomme, R.; Riclet, F.; Plachy, E.; Panem, C.; Harrison, D. L.; Masip, A.; Poggio, E.; Masana, E.; Michalik, D.; Messina, S.; Süveges, M.; Riva, A.; González Núñez, J.; Managau, S.; Utrilla, E.; Plum, G.; Arenou, F.; Jevardat de Fombelle, G.; Montegriffo, P.; Damerdji, Y.; Morbidelli, R.; Abreu Aramburu, A.; Thévenin, F.; Anderson, R. I.; Muñoz, D.; Hestroffer, D.; Mora, A.; Benson, K.; Randich, S.; Ordénovic, C.; Noval, L.; Zucker, S.; Van Leeuwen, F.; Regibo, S.; Smith, M.; Mastrobuono Battisti, A.; Bellas Velidis, I.; Muinonen, K.; Galluccio, L.; Santoveña, R.; Sartoretti, P.; Álvarez Cid Fuentes, J.; Eappachen, D.; Penttilä, A.; Osborne, Paul; Pineau, F. X.; Busonero, D.; Baker, S. G.; Molina, D.; García Reinaldos, M.; Poujoulet, E.; Bellazzini, M.; Palicio, P. A.; Prsa, A.; Pulone, L.; Ajaj, M.; Ragaini, S.; Holl, B.; Re Fiorentin, P.; Pancino, E.; Rambaux, N.; Vanel, O.; Guerra, R.; Soubiran, C.; Richards, P. J.; Jean Antonie Piccolo, A.; Mulone, A. F.; Murphy, C. P.; Robichon, N.; Van Reeven, W.; Hodgkin, S. T.; Robin, A. C.; Rohrbasser, L.; Spagna, A.; Palaversa, L.; Balog, Z.; Rainer, M.; Baudesson-Stella, A.; Audard, M.; Teixeira, R.; Recio Blanco, A.; Sahlmann, J.; Tonello, N.; Álvarez, M. A.; Bailer Jones, C. A. L.; Sánchez Giménez, V.; Wevers, T.; Andrae, R.; Bucciarelli, B.; Robin, C.; De Souza, R.; Roegiers, T.; Carnerero, M. I.; Segol, M.; Boch, T.; Ségransan, D.; Del Pozo, E.; Steidelmüller, H.; Siebert, A.; Creevey, O. L.; Vallenari, A.; Bassilana, J. L.; Riello, M.; Solitro, F.; Heiter, U.; Ulla, A.; Lattanzi, M. G.; De Luise, F.; Salguero, E.; Brown, A. G. A.; Bartolomé, S.; Guerrier, A.; Geyer, R.; Di Stefano, E.; Martín Fleitas, J. M.; Taris, F.; Cooper, W. J.; Taylor, M. B.; Gutiérrez Sánchez, R.; Fabrizio, M.; Brouillet, N.; García Gutierrez, A.; Torra, F.; Steele, I. A.; Torra, J.; Turon, C.; Di Matteo, P.; Vaillant, M.; Carballo, R.; Vicente, D.; Vecchiato, A.; Dell´Oro, A.; Aerts, C.; Altavilla, G.; Crosta, M.; Rimoldini, L.; Cropper, M.; Chaoul, L.; Slezak, E.; Yoldas, A.; Cantat Gaudin, T.; Dafonte, C.; Zorec, J.; Portell, J.; Drimmel, R.; Fernique, P.; Gai, M.; Van Dillen, E.; Esquej, P.; Burgess, P. W.; De Angeli, F.; Carry, B.; Diener, C.; Rybizki, J.; Frémat, Y.; Gosset, E.; Barstow, M. A.; González Vidal, J. J.; Yvard, P.; Luri, X.; Huckle, H. E.; Messineo, M.; Giacobbe, P.; Nicolas, C.; Mann, R. G.; Krone Martins, A.; Panuzzo, P.; Marrese, P. M.; Lorca, A.; Fraile, E.; Tanga, P.; Sordo, R.; Cánovas, H.; De Ridder, J.; Sozzetti, A.; Lister, T. A.; Fabricius, C.; Löffler, W.; Fragkoudi, F.; Aguado, J. J.; Martin Polo, L.; Sagristà Sellés, A.; Berthier, J.; Le Campion, J. F.; Brugaletta, E.; Pagano, I.; Mazeh, T.; González Santamaría, I.; Morel, T.; Cellino, A.; Cheek, N.; Clementini, G.; Marinoni, S.; Davidson, M.; Hladczuk, N.; García Lario, P.; Fernández Hernández, J.; Bramante, L.; Delgado, H. E.; Diakite, S.; De Bruijne, J. H. J.; Sarro, L. M.; Karbevska, L.; Roux, W.; Halbwachs, J. L.; Hidalgo, S. L.; Leclerc, N.; Hatzidimitriou, D.; Barache, C.; Siopis, C.; Mor, R.; Delchambre, L.; Massari, D.; Stephenson, C. A.; Van Leeuwen, M.; Bernet, M.; Marshall, D. J.; David, M.; Accart, S.; Burlacu, A.; Osinde, J.; Hambly, N. C.; Pauwels, T.; Piersimoni, A. M.; Lammers, U.; Muraveva, T.; Alves, J.; Roelens, M.; Casamiquela, L.; Antoja, T.; Castro Sampol, P.; Molnár, L.; Balbinot, E.; Balaguer Núñez, L.; Helmi, A.; Lobel, A.; De March, R.; Ripepi, V.; Abbas, U.; Castro Ginard, A.; Delisle, J. B.; Sadowski, G.; Castañeda, J.; Bauchet, N.; Racero, E.; Becciani, U.; Spoto, F.; Samaras, N.; Orrù, G.; Semeux, D.; Bianchi, L.; Blanco Cuaresma, S.; Rowell, N.; Bossini, D.; Peñalosa Ester, X.; Bressan, A.; Breedt, E.; Giuffrida, G.; Marconi, M.; Marocco, F.; David, P.; Poretti, E.; Baines, D.; Butkevich, A. G.; Pawlak, M.; Ramos, P.; Cancelliere, R.; Fienga, A.; De Laverny, P.; Segovia, J. C.; Manteiga, Minia; Solano, Enrique; Forderung der wissenschaftlichen Forschung (FWF); Belgian federal Science Policy Office (BELSPO); Hertha Firnberg Programme; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Comite Francais d'Evaluation de la Cooperation Universitaire et Scientifique avec le Bresil (COFECUB); National Natural Science Foundation of China (NSFC); China Scholarship Council (CSC); European Commission (EC); European Research Council (ERC); Hungarian National Research, Development, and Innovation Office (NKFIH); Science Foundation Ireland (SFI); Israel Science Foundation (ISF); Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF); Netherlands Research School for Astronomy (NOVA); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); European Space Agency (ESA); Centre National D'Etudes Spatiales (CNES); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Narodowe Centrum Nauki (NCN); Slovenian Research Agency; Swedish National Space Agency (SNSA); United Kingdom Science and Technology Facilities Council (STFC); Universitat de Barcelona (UB); Generalitat de Catalunya; Xunta de Galicia; Deliste, J. B. [0000-0001-5844-9888]; Sozzeti, A. [0000-0002-7504-365X]; Unidad de Excelencia Científica María de Maeztu Instituto de Ciencias del Cosmos Universidad de Barcelona, MDM-2014-0369; Centro de Excelencia Científica Severo Ochoa, Instituto de Ciencias del Cosmos de la Universidad de Barcelona, SEV2015-0493Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions. Aims. The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution. Methods. Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate. Results. Our best estimate of the acceleration based on Gaia EDR3 is (2.32 ± 0.16) × 10−10 m s−2 (or 7.33 ±0.51 km s−1 Myr−1) towards α = 269.1° ± 5.4°, δ = −31.6° ± 4.1°, corresponding to a proper motion amplitude of 5.05 ±0.35 μas yr−1. This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 μas yr−1.Publicación Acceso Abierto Gaia Early Data Release 3 Structure and properties of the Magellanic Clouds(EDP Sciences, 2021-04-28) Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero Gómez, M.; Balbinot, E.; Castro Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Mulone, A. F.; Siebert, A.; Le Fustec, Y.; Helmi, A.; Pourbaix, D.; Brown, A. G. A.; Vallenari, A.; Guerrier, A.; Utrilla, E.; Samaras, N.; González Santamaría, I.; Piersimoni, A. M.; Evans, D. W.; Busso, G.; Garofalo, A.; Jansen, F.; Fernández Hernández, J.; Klioner, S. A.; Liao, S.; Muñoz, D.; González Núñez, J.; Morris, D.; Fragkoudi, F.; Pineau, F. X.; Hutton, A.; Leclerc, N.; Delgado, A.; Hilger, T.; Girona, S.; Torra, F.; Drimmel, R.; De Laverny, P.; Lattanzi, M. G.; García Lario, P.; Zwitter, T.; Castañeda, J.; Jordi, C.; Musella, I.; Halbwachs, J. L.; Fabricius, C.; Randich, S.; Siopis, C.; Guiraud, J.; Zurbach, C.; De Angeli, F.; Charlot, P.; Palicio, P. A.; Kostrzewa Rutkowska, Z.; Lindegren, L.; Ducourant, C.; Buzzi, R.; Rambaux, N.; Roelens, M.; Julbe, F.; Molinaro, R.; Tanga, P.; Castellani, M.; Gracia Abril, G.; García Reinaldos, M.; Teyssier, D.; Aerts, C.; Sordo, R.; Bellas Velidis, I.; Álvarez, M. A.; Berthier, J.; Rohrbasser, L.; Anglada Varela, E.; Sánchez Giménez, V.; Zorec, J.; Pulone, L.; Marocco, F.; Madrero Pardo, P.; Robin, A. C.; Davidson, M.; Riclet, F.; Dell´Oro, A.; Benson, K.; Turron, C.; Seabroke, G. M.; Boch, T.; Pawlak, M.; Salgado, J.; Millar, N. R.; Blomme, R.; Galluccio, L.; Fabre, C.; Segovia, J. C.; Rixon, G.; Siltala, L.; Messineo, R.; Rainer, M.; Holl, B.; Recio Blanco, A.; Jevardat de Fombelle, G.; Jordan, S.; Ajaj, M.; Biermann, M.; Van Leeuwen, F.; Szegedi Elek, E.; Bertone, S.; Hodgkin, S. T.; Moitinho, A.; Bragaglia, A.; Muinonen, K.; Regibo, S.; Slezak, E.; Brouillet, N.; Massari, D.; Taris, F.; Pailler, F.; Marrese, P. M.; Ramos Lerate, M.; Lindstrom, H. E. P.; Osinde, J.; Morbidelli, R.; Burgess, P. W.; Sozzetti, A.; Ulla, A.; Breedt, E.; Heiter, U.; Van Reeven, W.; Mora, A.; Arenou, F.; Busonero, D.; Destroffer, D.; Richards, P. J.; De Luise, F.; Hatzidimitriou, D.; Abbas, U.; Kervella, P.; Steidelmüller, H.; Poujoulet, E.; Pancino, E.; Abreu Aramburu, A.; Haywood, M.; Van Dillen, E.; Yoldas, A.; Segol, M.; Balog, Z.; Juaristi Campillo, J.; Barbato, D.; Bressan, A.; Barstow, M. A.; Delisle, J. B.; Balaguer Núñez, L.; Bauchet, N.; Di Stefano, E.; Yvard, P.; Enke, H.; Bakker, J.; Hambly, N. C.; Torra, J.; Soubiran, C.; Robin, C.; David, M.; Bossini, D.; Baines, D.; Baudesson Stella, A.; Carry, B.; Muraveva, T.; Geyer, R.; Süveges, M.; Katz, D.; Schultheis, M.; Becciani, U.; Bramante, S.; Marcos Santos, M. M. S.; Cropper, M.; Mowlavi, N.; Álvarez Cid Fuentes, J.; Unger, C.; Carballo, R.; Babusiaux, C.; Carnerero, M. I.; Carrasco, J. M.; Diakite, S.; Cioni, M. R. L.; Altmann, M.; Chaoul, L.; Gavras, P.; Cantat Gaudin, T.; Comoretto, G.; Giuffrida, G.; Cornez, T.; Vicente, D.; Nicolas, C.; Granvik, M.; Andrae, R.; Antoja, T.; Chiavassa, A.; Vecchiato, A.; Sartoretti, P.; Souchay, J.; Semeux, D.; Bernet, M.; De Ridder, J.; De Souza, R.; Caffau, E.; De Torres, A.; Cooper, W. J.; Roegiers, T.; Guy, L. P.; Cánovas, H.; Crowley, C.; Lebreton, Y.; Prusti, T.; Del Peloso, E. F.; Thévenin, F.; Tonello, N.; Crifo, F.; Del Pozo, E.; Ordénovic, C.; Damerdji, Y.; Gosset, E.; Guerra, R.; Fernique, P.; Peñalosa Esteller, X.; González Vidal, J. J.; Fouron, C.; Lister, T. A.; Fedorets, G.; Franke, F.; Lammers, U.; Haigron, R.; Marchant, J. M.; Van Leeuwen, M.; Butkevich, A. G.; Rimoldini, L.; Wyrzykowski, L.; Lasne, Y.; Gilmore, G.; Fabrizio, M.; Gai, M.; Bianchi, L.; Janßen, Katja; Mignard, F.; Portell, J.; Fouesneau, M.; Garabato, D.; Gómez, A.; Rybicki, K. A.; Smith, M.; Alves, J.; Creevey, O. L.; Cellino, A.; Holland, G.; Löffler, W.; Jasniewicz, G.; Lobel, A.; Hernández, J.; Bartolomé, S.; Karbevska, L.; Molina, D.; Hobbs, D.; Kochoska, A.; Morel, T.; Kordopatis, G.; Anderson, R. I.; Murphy, C. P.; Bassilana, J. L.; Esquej, P.; Khanna, S.; Delchambre, L.; Riello, M.; Roux, W.; Jean Antonie Piccolo, A.; García Torres, M.; Leccia, S.; Hidalgo, S. L.; Lecoeur Taibi, I.; Kontizas, M.; David, P.; Noval, L.; Hladczuk, N.; Kruszynska, K.; Raiteri, C. M.; Krone Martins, A.; Barache, C.; Brugaletta, E.; Korn, A. J.; Licata, E.; Solitro, F.; Bombrun, A.; Brucciarelli, B.; Aguado, J. J.; Martín Polo, L.; Bailer Jones, C. A. L.; Masip, A.; Riva, A.; Marshall, D. J.; Mazeh, T.; Osborne, Paul; Burlacu, A.; Rowell, N.; De Teodoro, P.; Hauser, M.; Dapergolas, A.; Racero, E.; Montegriffo, P.; Marinoni, S.; Messina, S.; Eyer, L.; Carlucci, T.; Pauwels, T.; Barros, M.; Accart, S.; Michalik, D.; Zucker, S.; De March, R.; Dolding, C.; Lorca, A.; Blanco Cuaresma, S.; Palaversa, L.; De Bruijne, J. H. J.; Panahi, A.; Robichon, N.; Cancelliere, R.; Penttilä, A.; Sciacca, E.; Pagano, I.; Plachy, E.; Siddiqui, H. I.; Poggio, E.; Eappachen, D.; Smart, R. L.; Fraile, E.; Marconi, M.; Bouquillon, S.; Dafonte, C.; Baker, S. G.; Altavilla, G.; Mints, A.; Ramos, P.; Orrù, G.; Re Fiorentin, P.; Plum, G.; Le Campion, J. F.; Pagani, C.; Prsa, A.; Vaillant, M.; Casamiquela, L.; Fienga, A.; Bellazzini, M.; Poretti, E.; Reylé, C.; Panuzzo, P.; Giacobbe, P.; Di Matteo, P.; Sahlmann, J.; Rybizki, J.; Salguero, E.; Weiler, M.; Sagristà Sellés, A.; Sanna, N.; Cowell, S.; Gutierrez Sánchez, R.; Zhao, H.; Panem, C.; Lanza, A. F.; Bastian, U.; Ségransan, D.; Sadowski, G.; Santoveña, R.; Marchal, O.; Huckle, H. E.; Crosta, M.; Figueras, F.; Sarasso, M.; Harrison, D. L.; Lebzelter, T.; Managau, S.; Castro Sampol, P.; Gerlach, E.; Steele, I. A.; Lanzafame, A. C.; Stephenson, C. A.; Wevers, T.; Szabados, L.; Frémat, Y.; Spoto, F.; Tauran, G.; Masana, E.; Teixeira, R.; Mann, R. G.; Nienartowicz, K.; Mastrobuono Battisti, A.; Royer, F.; Lambert, S.; Faigler, S.; Diener, C.; Walton, N. A.; Vanel, O.; Souami, D.; Viala, Y.; Taylor, M. B.; Ragaini, S.; Spagna, A.; Cheek, N.; Jonker, P. G.; Martín Fleitas, J. M.; García Gutierrez, A.; Thuillot, W.; Voutsinas, S.; Audard, M.; Molnár, L.; Livanou, E.; Solano, Enrique; Manteiga, Minia; Forderung der wissenschaftlichen Forschung (FWF); Belgian federal Science Policy Office (BELSPO); Hertha Firnberg Programme; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Comite Francais d'Evaluation de la Cooperation Universitaire et Scientifique avec le Bresil (COFECUB); National Natural Science Foundation of China (NSFC); China Scholarship Council (CSC); European Commission (EC); European Research Council (ERC); Agence Nationale de la Recherche (ANR); European Space Agency (ESA); Centre National D'Etudes Spatiales (CNES); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Narodowe Centrum Nauki (NCN); Fundacao para a Ciencia e a Tecnologia (FCT); Slovenian Research Agency; Agencia Estatal de Investigación (AEI); Xunta de Galicia; Universitat de Barcelona (UB); Generalitat de Catalunya; Swedish National Space Agency (SNSA); United Kingdom Science and Technology Facilities Council (STFC); Krone Martins, A. [0000-0002-2308-6623]; Seabroke, G. [0000-0003-4072-9536]; Chiavassa, A. [0000-0003-3891-7554]; Castro Ginard, A. [0000-0002-9419-3725]; McMillan, P. [0000-0002-8861-2620]; Siltala, L. [0000-0002-6938-794X]; Delise, J. B. [0000-0001-5844-9888]; Aerts, C. [0000-0003-1822-7126]; Fedorets, G. [0000-0002-8418-4809]; Centro de Excelencia Científica Severo Ochoa, Instituto de Ciencias del Cosmos de la Universidad de Barcelona, SEV2015-0493; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2014-0369Context. This work is part of the Gaia Data Processing and Analysis Consortium papers published with the Gaia Early Data Release 3 (EDR3). It is one of the demonstration papers aiming to highlight the improvements and quality of the newly published data by applying them to a scientific case. Aims. We use the Gaia EDR3 data to study the structure and kinematics of the Magellanic Clouds. The large distance to the Clouds is a challenge for the Gaia astrometry. The Clouds lie at the very limits of the usability of the Gaia data, which makes the Clouds an excellent case study for evaluating the quality and properties of the Gaia data. Methods. The basis of our work are two samples selected to provide a representation as clean as possible of the stars of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). The selection used criteria based on position, parallax, and proper motions to remove foreground contamination from the Milky Way, and allowed the separation of the stars of both Clouds. From these two samples we defined a series of subsamples based on cuts in the colour-magnitude diagram; these subsamples were used to select stars in a common evolutionary phase and can also be used as approximate proxies of a selection by age. Results. We compared the Gaia Data Release 2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insightsinto features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones.