Examinando por Autor "Vago, J. L."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido Raman characterization of terrestrial analogs from the AMADEE‐18 astronaut simulated mission using the ExoMars RLS simulator: Implications for Mars(Wiley Analytical Science, 2020-11-09) Lalla, E.; Konstantinidis, M.; López Reyes, G.; Daly, M. G.; Veneranda, M.; Manrique, J. A.; Groemer, G.; Vago, J. L.; Rull, F.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Veneranda, M. [0000-0002-7185-2791]; Daly, M. [0000-0002-3733-2530]; Lalla, E. A. [0000-0002-0005-1006]; Konstantinidis, M. [0000-0002-5074-9023]; Manrique, J. A. [0000-0002-2053-2819]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Between February 1 and February 28, 2018, the Austrian Space Forum, in cooperation with research teams from 25 nations, conducted the AMADEE‐18 mission—a human‐robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. As a part of the AMADEE‐18 simulated Mars human exploration mission, the Remote Science Support team investigated the Dhofar area (Oman) to qualify it as a potential Mars analog site. The motivation of this research was to study and register selected samples collected by the analog astronauts during the AMADEE‐18 mission with the European Space Agency (ESA) ExoMars Raman Laser Spectrometer (RLS) simulator, compare the results with standard laboratory measurements, and establish the implication of the results to the future ESA ExoMars mission. The Raman measurements identified minerals such as carbonates (calcite and dolomite), feldspar and plagioclase (albite, anorthite, orthoclase, and sanidine), Fe‐oxides (goethite, hematite, and magnetite), and Ti‐oxide (anatase), each relevant to planetary exploration. As we have presented here, Raman spectroscopy is a powerful tool for detecting the presence of organic molecules, particularly by analyzing the principal vibration of CC and CH bonds. It has also been shown that portable Raman spectroscopy is a relevant tool for in situ field studies such as those conducted during extra‐vehicular activities (EVA) in simulated missions like the AMADEE‐18 and the future AMADEE‐2020 campaign.Publicación Restringido Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover(Wiley Analytical Science, 2020-01-23) López Reyes, G.; Pilorget, C.; Moral, A.; Manrique, J. A.; Berrocal, A.; Veneranda, M.; Rull, F.; Medina, J.; Hamm, V.; Bibring, J. P.; Rodríguez, J. A.; Pérez Canora, C.; Mateo Martí, Eva; Prieto Ballesteros, O.; Lalla, E.; Vago, J. L.; Sanz de la Rosa, Andrea; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Manrique, J. A. [0000-0002-2053-2819]; Moral, A. G. [0000-0002-6190-8560]; Venerada, M. [0000-0002-7185-2791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same sample target areas will be investigated using complementary analytical methods—infrared spectrometry, Raman spectrometry, and laser desorption mass spectrometry—to establish mineralogical and organic chemistry composition. Fundamental for implementing this cooperative science strategy is the Raman Laser Spectrometer (RLS) calibration target (CT). The RLS CT features a polyethylene terephthalate disk used for RLS calibration and verification of the instrument during the mission. In addition, special patterns have been recorded on the RLS CT disk that the other instruments can detect and employ to determine their relative position. In this manner, the RLS CT ensures the spatial correlation between the three analytical laboratory instruments: MicrOmega, RLS, and MOMA. The RLS CT has been subjected to a series of tests to qualify it for space utilization and to characterize its behavior during the mission. The results from the joint work performed by the RLS and MicrOmega instrument teams confirm the feasibility of the “combined science” approach envisioned for ExoMars rover operations, whose science return is optimized when complementing the RLS and MicrOmega joint analysis with the autonomous RLS operation.