Examinando por Autor "Toledo, D."
Mostrando 1 - 12 de 12
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Convective Vortices and Dust Devils Detected and Characterized by Mars 2020(AGU Advancing Earth and Space Science, 2023-02-10) Hueso, R.; Newman, C. E.; Del Río Gaztelurrutia, T.; Munguira, A.; Sánchez Lavega, A.; Toledo, D.; Arruego, I.; Vicente Retortillo, Á.; Martínez, G.; Lemmon, M. T.; Lorenz, Ralph; Richardson, M. I.; Viúdez Moreiras, Daniel; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Tamppari, L. K.; Murdoch, N.; Navarro López, Sara; Gómez Elvira, J.; Baker, M.; Pla García, J.; Harri, Ari-Matti; Hieta, M.; Genzer, M.; Polkko, J.; Jaakonaho, I.; Makinen, Terhi; Stott, Alexander; Mimoun, D.; Chide, B.; Sebastián Martínez, Eduardo; Banfield, D.; Lepinette Malvitte, A.; Apéstigue, Víctor; Gobierno Vasco; Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Los Alamos National Laboratory (LANL); Arizona State University (ASU); Universities Space Research Association (USRA); NASA Jet Propulsion Laboratory (JPL); Comunidad de Madrid; Academy of Finland (AKA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.Publicación Restringido DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander(Elsevier, 2017-07-01) Arruego, I.; Jiménez Martín, Juan José; Martínez Oter, J.; Álvarez Ríos, F. J.; González Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez Michavila, M.; Yela González, M.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), “Schiaparelli”. DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands – Ultraviolet (UV) and near infrared (NIR) – which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.Publicación Acceso Abierto Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS)(GU Advancing Earth and Space Science, 2023-01-17) Toledo, D.; Arruego, I.; Lemmon, M. T.; Gómez, L.; Montoro, F.; Hueso, R.; Newman, C. E.; Smith, M.; Viúdez Moreiras, Daniel; Martínez, G.; Vicente Retortillo, Á.; Sánchez Lavega, Agustín; De la Torre Juarez, M.; Rodríguez Manfredi, J. A.; Carrasco, I.; Yela González, M.; Jiménez, J. J.; García Menéndez, Elisa; Navarro, Sara; Gómez Elvira, J.; Harri, Ari-Matti; Polkko, J.; Hieta, M.; Genzer, M.; Murdoch, N.; Sebastián, E.; Apéstigue, Víctor; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno VascoThe Mars Environmental Dynamics Analyzer, onboard the Perseverance rover, is a meteorological station that is operating on Mars and includes, among other sensors, the radiometer Radiation and Dust Sensor (RDS). From RDS irradiance observations, a total of 374 dust devils (DDs) were detected for the first 365 sols of the mission (Ls = 6°–182°), which along with wind and pressure measurements, we estimated a DD frequency of formation at Jezero between 1.3 and 3.4 DD km−2 sol−1 (increasing as we move from spring into summer). This frequency is found to be smaller than that estimated at the Spirit or Pathfinder landing sites but much greater than that derived at InSight landing site. The maximum in DD frequency occurs between 12:00 and 13:00 local true solar time, which is when the convective heat flux and lower planetary boundary layer IR heating are both predicted to peak in Jezero crater. DD diameter, minimum height, and trajectory were studied showing (a) an average diameter of 29 m (or a median of 25 m) and a maximum and minimum diameter of 132 ± 63.4 and 5.6 ± 5.5 m; (b) an average minimum DD height of 231 m and a maximum minimum-height of 872 m; and (c) the DD migration direction is in agreement with wind measurements. For all the cases, DDs decreased the UV irradiance, while at visible or near-IR wavelengths both increases and decreases were observed. Contrary to the frequency of formation, these results indicate similar DD characteristics in average for the studied period.Publicación Acceso Abierto Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater(AGU Advancing Earth and Space Science, 2022-11-16) Lemmon, M. T.; Smith, M. D.; Viúdez Moreiras, Daniel; De la Torre Juarez, M.; Vicente Retortillo, Á.; Munguira, A.; Sánchez Lavega, A.; Hueso, R.; Martínez, Germán; Chide, B.; Sullivan, R.; Toledo, D.; Tamppari, L. K.; Bertrand, T.; Bell, J. F.; Newman, C. E.; Baker, M.; Banfield, D.; Rodríguez Manfredi, J. A.; Maki, Justin N.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5–11 January 2022 (LS 153°–156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s−1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events—gusts and dust devils—in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.Publicación Acceso Abierto Hexagonal Prisms Form in Water-Ice Clouds on Mars, Producing Halo Displays Seen by Perseverance Rover(AGU Advancing Earth and Space Science, 2022-10-03) Lemmon, M. T.; Toledo, D.; Arruego, I.; Wolff, M. J.; Patel, P.; Guzewich, S.; Colaprete, A.; Vicente Retortillo, Á.; Tamppari, L. K.; Montmessin, F.; De la Torre Juarez, M.; Maki, Justin N.; McConnochie, T.; Brown, Adrian Jon; Bell, J. F.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); Ministerio de Economía y Competitividad (MINECO); Gobierno Vasco; European Research Council (ERC); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 μm in diameter and length. From a possible 40–50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3–12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.Publicación Acceso Abierto Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements(AGU Advancing Earth and Space Science, 2022-11-01) Sánchez Lavega, A.; Del Río Gaztelurrutia, T.; Hueso, R.; De la Torre Juarez, M.; Martínez, G. M.; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Polkko, J.; Rodríguez Manfredi, J. A.; Lemmon, M. T.; Pla García, J.; Toledo, D.; Vicente Retortillo, Á.; Viúdez Moreiras, Daniel; Munguira, A.; Tamppari, L. K.; Newman, C. E.; Gómez Elvira, J.; Guzewich, S. D.; Bertrand, T.; Arruego, I.; Wolff, Michael; Banfield, D.; Jaakonaho, I.; Mäkinen, T.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); National Aeronautics and Space Administration (NASA); Universities Space Research Association (USRA); Gobierno Vasco; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.Publicación Restringido Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM(Elsevier, 2017-01-20) Toledo, D.; Arruego, I.; Jiménez, J. J.; Gómez, L.; Yela González, M.; Rannou, P.; Pommereau, J. P.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)"The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METED meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the, dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed."Publicación Acceso Abierto Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover(Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Jiménez, J. J.; Boland, J.; Lemmon, M. T.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Toledo, D.; Álvarez Rios, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, J.; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, M.; Manzano, P.; Martín, J. A.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Córdoba, E.; Leiter, R.; Thompson, A.; Madsen, S.; Smith, M. D.; Viúdez Moreiras, Daniel; Saix López, A.; Sánchez Lavega, A.; Apéstigue, Víctor; Gómez Martín, L.; Gonzalo Melchor, Alejandro; Martínez, G. M.; de Mingo Martín, José Ramón; Gómez Elvira, J.; Martín-Ortega, Alberto; Arruego, I.; del Hoyo Gordillo, Juan Carlos; Martín-Ortega, Alberto; González Hernández, Carmen; Martín-Ortega, Alberto; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.Publicación Acceso Abierto Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument(AGU Advancing Earth and Space Science, 2023-02) Martínez, G. M.; Sebastián, E.; Vicente Retortillo, Á.; Smith, Michael; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez Lavega, A.; Lemmon, M. T.; Gómez, F.; Polkko, J.; Mandon, Lucía; Arruego, I.; Ramos, M.; Conrad, Pamela G.; Newman, C. E.; De la Torre Juarez, M.; Jordan, Francisco; Tamppari, L. K.; Mcconnochie, T. H.; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Zorzano, María Paz; Siegler, M.; Prieto Ballesteros, O.; Molina, A.; Rodríguez Manfredi, J. A.; Apéstigue, Víctor; Comunidad de Madrid; Universities Space Research Association (USRA); Agencia Estatal de Investigación (AEI); Gobierno Vasco; Instituto Nacional de Técnica Aeroespacial (INTA); Centre National D'Etudes Spatiales (CNES); National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, M. D.; Jaakonaho, I.; Genzer, M.; Vicente Retortillo, Á.; Viúdez Moreiras, Daniel; Ramos, M.; Saiz López, A.; Lepinette, A.; Wolff, M.; Sullivan, R. J.; Gómez Elvira, J.; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, I.; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Richardson, M. I.; Romeral, J.; Savijärv, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Apéstigue, Víctor; Zurita, S.; Romero Guzman, Catalina; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Á.; Martínez, G. M.; Toledo, D.; Sullivan, R.; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A. E.; Murdoch, N.; Sánchez Lavega, A.; Wolff, M. J.; Arruego, I.; Sebastián, E.; Navarro, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, M. D.; Lepinette, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, F.; Mcconnochie, T. H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María Paz; Mora, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, S. D.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.Publicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Arruego, I.; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Á.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Fernández Palma, A.; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, M.; Giménez, Á.; Gómez Elvira, J.; Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez, J. J.; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette, A.; Lemmon, M. T.; López, G.; Madsen, N. S.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro, Sara; Newman, C. E.; Ortega, C.; Parrondo, M. C.; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Ramos, M.; Richardson, M. I.; Romeral, J.; Runyon, K. D.; Saiz López, A.; Sánchez Lavega, A.; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, M. D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Apéstigue, Víctor; Ferrándiz, Ricardo; Romero Guzman, Catalina; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.