Examinando por Autor "Tabernero, H. M."
Mostrando 1 - 10 de 10
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO(EDP Sciences, 2021-01-22) Borsa, F.; Allart, R.; Casasayas Barris, N.; Tabernero, H. M.; Zapatero Osorio, M. R.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Adibekyan, V.; Bourrier, V.; Demangeon, O. D. S.; Ehrenreich, D.; Pallé, E.; Sousa, S. G.; Lillo Box, J.; Lovis, C.; Micela, G.; Oshagh, M.; Poretti, E.; Sozzetti, A.; Allende Prieto, C.; Alibert, Y.; Amate, M.; Benz, W.; Bouchy, F.; Cabral, A.; Dekker, H.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Genova Santos, R.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Riva, M.; Suárez Mascareño, A.; Udry, S.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Cabral, A. [0000-0002-9433-871X]; Adibekyan, V. [0000-0002-0601-6199]; Santos, N. [0000-0003-4422-2919]; Nunes, N. [0000-0002-3837-6914]; Sozzetti, A. [0000-0002-7504-365X]; Suarez Mascareño, A. [0000-0002-3814-5323]Context. Ultra-hot Jupiters are excellent laboratories for the study of exoplanetary atmospheres. WASP-121b is one of the most studied; many recent analyses of its atmosphere report interesting features at different wavelength ranges. Aims. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in one-telescope mode, and one partial transit taken during the commissioning of the instrument in four-telescope mode. Methods. We take advantage of the very high S/N data and of the extreme stability of the spectrograph to investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. We pay particular attention to the removal of instrumental effects, and stellar and telluric contamination. The transmission spectrum is investigated through single-line absorption and cross-correlation with theoretical model templates. Results. By analyzing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter–McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052 ± 0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum thanks to the quality of our ESPRESSO data. We detected significant absorption in the transmission spectrum for Na, H, K, Li, Ca II, and Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of ~0.2% detected at the 6σ level. With the cross-correlation technique we confirmed the presence of Fe I, Fe II, Cr I, and V I. Hα and Ca II are present up to very high altitudes in the atmosphere (~1.44 Rp and ~2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.Publicación Acceso Abierto Characterization of the K2-38 planetary system Unraveling one of the densest planets known to date(EDP Sciences, 2020-09-14) Toledo Padrón, B.; Lovis, C.; Suárez Mascareño, A.; Barros, S. C. C.; Sozzetti, A.; Bouchy, F.; Zapatero Osorio, M. R.; Rebolo, R.; Cristiani, S.; Pepe, F. A.; Santos, N. C.; Sousa, S. G.; Tabernero, H. M.; Lillo Box, J.; Bossini, D.; Adibekyan, V.; Allart, R.; Damasso, M.; D´Odorico, V.; Figueira, P.; Lavie, B.; Lo Curto, G.; Mehner, A.; Micela, G.; Modigliani, A.; Nunes, N. J.; Pallé, E.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benatti, S.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Deiries, S.; Dekker, H.; Delabre, B.; Demangeon, O. D.; Di Marcoantonio, P.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Knudstrup, J.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Molaro, P.; Monteiro, M. J. P. F. G.; Monteiro, M. A.; Moschetti, M.; Mueller, E.; Oggioni, L.; Oliveira, A.; Rivas, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Fundacion La Caixa; Swiss National Science Foundation (SNSF); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Ministerio de Ciencia e Innovación (MICINN); 0000-0001-8160-5076; 0000-0003-0987-1593; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V similar to 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with P-b = 4.01593 +/- 0.00050 d and P-c = 10.56103 +/- 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, T-eff = 5731 +/- 66, log g = 4.38 +/- 0.11 dex, and [Fe/H] = 0 :26 +/- 0.05 dex, and thus the mass and radius of K2-38, M-star = 1.03(-0.02)(+0.04) M-circle plus and R-circle plus = 1.06+0:09 0:06 R-circle plus. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with R-P = 1.54 +/- 0.14 R-circle plus and M-p = 7.3(-1.0)(+1:1) M-circle plus, and K2-38c as a sub-Neptune with RP = 2.29 +/- 0.26 R-circle plus and M-p = 8.3(-1.3)(+1:3) M (circle plus). Combining the radius and mass measurements, we derived a mean density of rho(p) = 11.0(-2.8)(+4:1) g cm(-3) for K2-38b and rho(p) = 3.8+1:8 1:1 g cm(-3) for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity.Publicación Acceso Abierto ESPRESSO high-resolution transmission spectroscopy of WASP-76 b(EDP Sciences, 2021-02-19) Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas Barris, N.; Demangeon, O. D. S.; Ehrenreich, D.; Lillo Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, N. C.; Pepe, F.; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D´Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Genova Santos, R.; Hojjatpanah, S.; Lo Curto, G.; Lavie, B.; Martins, C. J. A. P.; Martins, J. H. C.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Poretti, E.; Seidel, J. V.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Aliverti, M.; Affolter, M.; Alves, D.; Amate, M.; Ávila, G.; Bandy, T.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Conconi, P.; Coelho, J.; Cumani, C.; Deiries, S.; Dekker, H.; Delabre, B.; Fragoso, A.; Genoni, M.; Genolet, L.; Hughes, I.; Knudstrup, J.; Kerber, F.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Di Marcoantonio, P.; Mégevand, D.; Monteiro, M.; Moschetti, M.; Mueller, E.; Modigliani, A.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Iwert, O.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Istituto Nazionale di Astrofisica (INAF); Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. [0000-0003-0513-8116]; Coelho, F. M. [0000-0002-4339-0550]; Faria, J. [0000-0002-6728-244X]; Santos, N. [0000-0003-4422-2919]Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.Publicación Acceso Abierto HORuS transmission spectroscopy of 55 Cnc e(Oxford Academics: Blackwell Publishing, 2020-08-26) Tabernero, H. M.; Allende Prieto, C.; Zapatero Osorio, M. R.; Del Burgo, C.; García López, Ramón; Rebolo, R.; Abril Abril, M.; Calvo Tovar, J.; Díaz Torres, A.; Fernández Izquierdo, P.; Gómez Reñasco, M. F.; Gracia Témich, F.; Joven, E.; Peñate Castro, J.; Santana Tschudi, S.; Tenegi, F.; Viera Martín, H. D.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Mexican National Council on Science and Technology (CONACYT); Ministerio de Economía y Competitividad (MINECO); Tabernero, H. M. [https://orcid.org/0000-0002-8087-4298]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The High Optical Resolution Spectrograph (HORuS) is a new high-resolution echelle spectrograph available on the 10.4-m Gran Telescopio Canarias (GTC). We report on the first HORuS observations of a transit of the super-Earth planet 55 Cnc e. We investigate the presence of Na I and Hα in its transmission spectrum and explore the capabilities of HORuS for planetary transmission spectroscopy. Our methodology leads to residuals in the difference spectrum between the in-transit and out-of-transit spectra for the Na I doublet lines of (3.4 ± 0.4) × 10−4, which sets an upper limit to the detection of line absorption from the planetary atmosphere that is one order of magnitude more stringent that those reported in the literature. We demonstrate that we are able to reach the photon-noise limit in the residual spectra using HORuS to a degree that we would be able to easily detect giant planets with larger atmospheres. In addition, we modelled the structure, chemistry, and transmission spectrum of 55 Cnc e using state-of-the-art open source tools.Publicación Acceso Abierto Stellar atmospheric parameters of FGK-type stars from high-resolution optical and near-infrared CARMENES spectra(Oxford Academics: Oxford University Press, 2020-01-10) Marfil, E.; Tabernero, H. M.; Montes, D.; Caballero, J. A.; Soto, M. G.; Kaminski, A.; Nagel, E.; Jeffers, S. V.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); 0000-0001-8907-4775; 0000-0002-8087-4298; 0000-0002-7349-1387; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-stable, double channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters (Teti, log g, 4, and [Fell I]) by means of the STEPAR code, a PYTHON implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe 1 and Fe tl line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17 100 A, thus substantially increasing the number of identified Fe! and Felt lines up to 653 and 23, respectively, We examined the impact of the near-infrared Fe and Fen lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 Gala benchmark stars contained in our sample, Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fel and Feu lines when the near-infrared region is taken into account reveals a deeper Teff scale that might stem from a higher sensitivity of the near-infrared lines to Tff.C 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyPublicación Acceso Abierto The atmosphere of HD 209458b seen with ESPRESSO No detectable planetary absorptions at high resolution(EDP Sciences, 2021-03-02) Casasayas Barris, N.; Pallé, E.; Strangret, M.; Bourrier, V.; Tabernero, H. M.; Yan, F.; Borsa, F.; Allart, R.; Zapatero Osorio, M. R.; Lovis, C.; Sousa, S. G.; Chen, G.; Oshagh, M.; Santos, N. C.; Pepe, F.; Rebolo, R.; Molaro, P.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Bouchy, F.; Demangeon, O. D. S.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Génova Santos, R.; Lavie, B.; Lillo Box, J.; Lo Curto, G.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Nunes, N. J.; Poretti, E.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; National Natural Science Foundation of China (NSFC); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); Yan, F. [0000-0001-9585-9034]; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, Na I, Mg I, Fe I, Fe II, Ca I, V I, Hα, and K I. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported Na I, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum (~1700 at 590 nm) allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs A deep learning approach to determine fundamental parameters of target stars(EDP Sciences, 2020-09-30) Passegger, V. M.; Bello García, A.; Ordieres Meré, J.; Caballero, J. A.; Schweitzer, A.; González Marcos, A.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Cortés Contreras, M.; Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Marfil, E.; Montes, D.; Morales, J. C.; Nagel, E.; Sarro, L. M.; Tabernero, H. M.; Zechmeister, M.; Solano, Enrique; Agencia Estatal de Investigación (AEI); Fundacao para a Ciencia e a Tecnologia (FCT); National Aeronautics and Space Administration (NASA); Bello García, A. [0000-0001-8691-3342]; Ordieres Meré, J. [0000-0002-9677-6764]; Caballero, J. A. [0000-0002-7349-1387]; González Marcos, A. [0000-0003-4684-659X]; Ribas, I. [0000-0002-6689-0312]; Azzaro, M. [0000-0002-1317-0661]; Kürster, M. [0000-0002-1765-9907]; Marfil, E. [0000-0001-8907-4775]; Montes, D. [0000-0002-7779-238X]; Morales, J. C. [0000-0003-0061-518X]; Nagel, E. [0000-0002-4019-3631]; Sarro, L. M. [0000-0002-5622-5191]; Tabernero, H. [0000-0002-8087-4298]; Zechmesister, M. [0000-0002-6532-4378]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs Different roads to radii and masses of the target stars(EDP Sciences, 2019-05-14) Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar, V. J. S.; Cortés Contreras, M.; Caballero, J. A.; Del Burgo, C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Tabernero, H. M.; Zechmeister, M.; Solano, Enrique; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Aims. We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R > 80 000) spectroscopic survey has been used to derive these fundamental stellar parameters. Methods. We derived the radii using Stefan–Boltzmann’s law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Results. Between spectral types M0 V and M7 V our radii cover the range 0.1 R⊙ < R < 0.6 R⊙ with an error of 2–3% and our masses cover 0.09 ℳ⊙ < ℳ< 0.6ℳ⊙ with an error of 3–5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.Publicación Acceso Abierto The EChO science case(Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Schrader, J. R.; Scholz, A.; Watkins, C.; Maillard, J. P.; Abreu, M.; Glasse, A.; Testi, L.; Doel, P.; Magnes, W.; Licandro Goldaracena, J.; Wawer, P.; Zapatero Osorio, M. R.; Decin, L.; Sánz Forcada, J.; Vakili, F.; Aylward, A.; Swain, M.; Sozzetti, A.; Filacchione, G.; Delgado Mena, E.; Read, P.; Lognonné, P.; Irshad, R.; Coates, A.; Cecchi Pestellini, C.; Thrastarson, H.; Brown, L.; Guillot, T.; Strazzulla, G.; Barstow, J. K.; Budaj, J.; Morgante, G.; Pietrzak, R.; Leconte, J.; Hersant, F.; De Sio, A.; Grassi, D.; Selsis, F.; Jarchow, C.; Fouqué, P.; Del Vecchio, C.; Tennyson, J.; Cassan, A.; Fernández Hernández, Maite; Burleigh, M. R.; Cordier, D.; De Witt, J.; Pagano, I.; Ray, T.; Gambicorti, L.; Palla, F.; Maldonado, J.; Biondi, D.; Eiroa, C.; Winek, W.; Ade, P.; Villaver, E.; Temple, J.; Gear, W.; Thompson, S.; Dominic, C.; Galand, M.; Focardi, M.; Cockell, C.; Pace, E.; Dorfi, E.; Bryson, I.; Cavarroc, C.; Pilat Lohinger, E.; Smith, A.; Eymet, V.; MacTavish, C.; Morales, J. C.; Gómez, H.; Stamper, R.; Esposito, M.; Andersen, A.; Azzollini, R.; Maxted, P.; Allende Prieto, C.; Nelson, R.; Gillon, M.; Achilleos, N.; Buchhave, L. A.; Fabrizio, N.; Ciaravella, A.; Claudi, R.; Damasso, M.; Bordé, P.; Figueira, P.; Rickman, H.; Rees, J. M.; Sitek, P.; Fossey, S.; Bakos, G.; Pascale, E.; Laken, B.; Soret, L.; Femenía Castella, B.; Allard, F.; Amado, P. J.; Luzzi, D.; Colomé, J.; Galand, M.; Lammer, H.; Bonford, B.; López Valverde, M. A.; Kerins, E.; Yung, Y.; Espinoza Contreras, M.; Irwin, P.; Herrero, E.; Wright, G.; Guàrdia, J.; Banaszkiewicz, M.; Hoogeeven, R.; Alcala, J.; Guio, P.; Koskinen, T.; Barton, E. J.; Piskunov, N.; Maurin, A. S.; Leto, G.; Boisse, I.; Claret, A.; Massi, F.; Kervella, P.; Börne, P.; Heiter, U.; Hargrave, P.; Fletcher, L.; Sánchez Béjar, V. J.; Bézard, B.; Cabral, A.; Michaut, C.; Winter, B.; Sousa, S.; Giuranna, M.; Batista, V.; Frith, J.; Ballerini, P.; López Morales, M.; Monteiro, M.; Tingley, B. W.; Lanza, N.; Maggio, A.; Lundgaard Rasmussen, I.; Altieri, F.; Covino, E.; Coustenis, A.; Heredero, R. L.; Watson, D.; Coudé du Foresto, V.; Liu, S. J.; Sicardy, B.; Deeg, H. J.; Moses, J.; Rodler, F.; Lithgow Bertelloni, C.; Demangeon, O.; Adybekian, V.; Fletcher, L.; Swinyard, B.; Morales Calderón, M.; Fouqué, P.; Deroo, P.; Lo Cicero, Ugo; Hueso, R.; Iro, N.; González Merino, B.; López Puertas, M.; Capria, M. T.; Danielski, C.; Branduardi Raymont, G.; Luntzer, A.; Gaulme, P.; Bulgarelli, A.; Parmentier, V.; Gerard, J. C.; Alard, C.; Frith, J.; Dobrijévic, M.; Medvedev, A.; Barrado, D.; Jacquemoud, S.; Sethenadh, J.; Readorn, K.; Polichtchouk, I.; Petrov, R.; García Piquer, A.; Tabernero, H. M.; White, G.; Pancrazzi, M.; García López, Ramón; Filacchione, G.; Gómez Leal, I.; Rengel, M.; Gesa, L.; Tanga, P.; Mueller Wodarg, I.; Israelian, G.; Rebolo López, R.; Shore, S.; Peralta, J.; Collura, A.; Giro, E.; Del Val Borro, M.; Griffith, C.; Tecsa, M.; Haigh, J.; Moro Martín, A.; Jones, H.; Gizon, L.; Pezzuto, S.; Giani, E.; Mall, U.; Eales, S.; Graczyk, R.; Ramos Zapata, G.; Krupp, N.; Sánchez Lavega, A.; Fossey, S.; Alonso Floriano, F. J.; Justtanot, K.; Santos, N.; Pérez Hoyos, S.; Savini, G.; Chamberlain, S.; Bowles, N.; Kerschbaum, F.; Tozzi, A.; Turrini, D.; Kipping, D.; Maruquette, J. B.; Correira, A.; Trifoglio, M.; Agúndez, Marcelino; Scandaratio, G.; Snellen, I. A.; Scuderi, S.; Femenía Castella, B.; Prisinzano, L.; Oliva, E.; Hébrard, E.; Lodieu, N.; Forget, F.; Chadney, J.; Showman, A.; Gustin, J.; Vinatier, S.; Charnoz, S.; Affer, L.; Rank Lüftinger, T.; Poretti, E.; Lahav, O.; North, C.; Gerard, J. C.; Murgas Alcaino, F.; Yurchenko, S. N.; Widemann, T.; Ward Thompson, D.; Montañés Rodríguez, P.; Kovács, G.; Valdivieso, M. L.; Moya Bedon, A.; Montalto, M.; Christian Jessen, N.; Venot, O.; Koskinen, T.; Lagage, P. O.; Bellucci, G.; Prinja, R.; Pinfield, D.; Banaszkiewicz, M.; Waldmann, I.; Jones, G.; Morello, G.; Crook, J.; Lim, T.; Parviainen, H.; Pallé, E.; Ramos, A. A.; Sanromá, E.; Waters, R.; Morais, H.; Stiepen, A.; Lellouch, E.; Orton, G.; Rezac, L.; Beaulieu, J. P.; Focardi, M.; Mauskopf, P.; Barlow, M.; Guedel, M.; Waltham, D.; Agnor, C.; Encrenaz, T.; Cerulli, R.; Balado, A.; Bouy, H.; Rebordao, J.; Stolarski, M.; Álvarez Iglesias, C. A.; Adriani, A.; Rocchetto, M.; Norgaard Nielsen, H. U.; Hollis, M.; Selig, A.; Malaguti, G.; Burston, R.; Peña Ramírez, K. Y.; Schmider, F. X.; Baffa, C.; Heyrovsky, D.; Figueira, P.; Piccioni, G.; Ottensamer, R.; Radioti, A.; Yelle, R.; Pantin, E.; Miles Paez, P.; Belmonte Avilés, J. A.; Montes, D.; Varley, R.; Viti, S.; Abe, L.; Pinsard, F.; Tessenyi, M.; Di Giorgio, A.; Turrini, D.; Terenzi, L.; Hubert, B.; Griffin, M.; Barber, R. J.; Cole, R.; Gianotti, F.; Blecka, M.; Wawrzaszk, A.; Middleton, K.; De Kok, R.; Martín Torres, Javier; Kehoe, T.; Cho, J.; Machado, P.; Berry, D.; Wisniowski, T.; Grodent, D.; Rataj, M.; Hornstrup, A.; Kerschbaum, F.; Vandenbussche, B.; Stixrude, L.; González Hernández, Carmen; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Bulgarelli, A. [0000-0001-6347-0649]; Morales Calderon, M. [0000-0001-9526-9499]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; López Valverde, M. A. [0000-0002-7989-4267]; Gillon, M. [0000-0003-1462-7739]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pancrazzi, M. [0000-0002-3789-2482]; Pilat Lohinger, E. [0000-0002-5292-1923]; Altieri, F. [0000-0002-6338-8300]; Malaguti, G. [0000-0001-9872-3378]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Kovacs, G. [0000-0002-2365-2330]; Guillot, T. [0000-0002-7188-8428]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Olivia, E. [0000-0002-9123-0412]; Tizzi, A. [0000-0002-6725-3825]; Selsis, F. [0000-0001-9619-5356]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Gear, W. [0000-0001-6789-6196]; Damasso, M. [0000-0001-9984-4278]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Maldonado, J. [0000-0002-4282-1072]; Pace, E. [0000-0001-5870-1772]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Claret, A. [0000-0002-4045-8134]; Rodríguez, P. [0000-0002-6855-9682]; Bezard, B. [0000-0002-5433-5661]; Gómez, H. [0000-0003-3398-0052]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Hornstrup, A. [0000-0002-3363-0936]; Scholz, A. [0000-0001-8993-5053]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Danielski, C. [0000-0002-3729-2663]; Vandenbussche, B. [0000-0002-1368-3109]; Sousa, S. [0000-0001-9047-2965]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Bakos, G. [0000-0001-7204-6727]; Ade, P. [0000-0002-5127-0401]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Haigh, J. [0000-0001-5504-4754]; Scandariato, G. [0000-0003-2029-0626]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Adibekyan, V. [0000-0002-0601-6199]; Pérez Hoyos, S. [0000-0001-9797-4917]; Poretti, E. [0000-0003-1200-0473]; Maggio, A. [0000-0001-5154-6108]; Kervella, P. [0000-0003-0626-1749]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Filacchione, G. [0000-0001-9567-0055]; Rickman, H. [0000-0002-9603-6619]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Fletcher, L. [0000-0001-5834-9588]; Rataj, M. [0000-0002-2978-9629]; Stixrude, L. [0000-0003-3778-2432]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Hueso, R. [0000-0003-0169-123X]; Yurchenko, S. [0000-0001-9286-9501]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Peralta, J. [0000-0002-6823-1695]; Budaj, J. [0000-0002-9125-7340]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Grassi, D. [0000-0003-1653-3066]; Piccioni, G. [0000-0002-7893-6808]; Barton, E. [0000-0001-5945-9244]; Abreu, M. [0000-0002-0716-9568]; Ribas, I. [0000-0002-6689-0312]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Bouy, H. [0000-0002-7084-487X[; Lognonne, P. [0000-0002-1014-920X]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Tanga, P. [0000-0002-2718-997X]; Delgado, M. E. [0000-0003-4434-2195]; Leto, G. [0000-0002-0040-5011]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Balado, A. [0000-0003-4268-2516]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Barrado Navascues, D. [0000-0002-5971-9242]; Figueira, P. [0000-0001-8504-283X]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; Cabral, A. [0000-0002-9433-871X]; Watson, D. [0000-0002-4465-8264]; Turrini, D. [0000-0002-1923-7740]The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.Publicación Acceso Abierto The Gaia -ESO Survey: Calibrating the lithium-age relation with open clusters and associations: I. Cluster age range and initial membership selections(EDP Sciences, 2020-11-05) Gutiérrez Albarrán, M. L.; Montes, D.; Gómez Garrido, M.; Tabernero, H. M.; Marfil, E.; Frasca, A.; Lanzafame, A. C.; Klutsch, A.; Franciosini, E.; Randich, S.; Smiljanic, R.; Korn, A. J.; Gilmore, G.; Alfaro, E. J.; Baratella, M.; Bayo, A.; Bensby, T.; Bonito, R.; Carraro, G.; Delgado Mena, E.; Feltzing, S.; Gonneau, A.; Heiter, U.; Hourihane, A.; Jiménez Esteban, F. M.; Jofre, P.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Roccatagliata, V.; Sousa, S.; Van der Swaelmen, M.; Worley, Charlotte C.; Zaggia, S.; González Hernández, Carmen; Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Agencia Estatal de Investigación (AEI); Fundação para a Ciência e a Tecnologia (FCT); Leverhulme Trust; 0000-0002-7569-3513; 0000-0002-7779-238X; 0000-0002-8087-4298; 0000-0002-0264-7356; 0000-0001-8907-4775; 0000-0002-0474-0896; 0000-0001-7869-3888; 0000-0003-3969-0232; 0000-0003-2438-0899; 0000-0003-0942-7855; 0000-0003-3978-1409; 0000-0001-9297-7748; 0000-0002-0155-9434; 0000-0002-3148-9836Context. Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent but also shows a complex pattern with other parameters that is not yet understood. For pre- and main-sequence late-type stars, these parameters include metallicity, mixing mechanisms, convection structure, rotation, and magnetic activity. Aims. We perform a thorough membership analysis for a large number of stars observed within the Gaia-ESO survey (GES) in the field of 20 open clusters, ranging in age from young clusters and associations, to intermediate-age and old open clusters. Methods. Based on the parameters derived from the GES spectroscopic observations, we obtained lists of candidate members for each of the clusters in the sample by deriving radial velocity distributions and studying the position of the kinematic selections in the EW(Li)-versus-Teff plane to obtain lithium members. We used gravity indicators to discard field contaminants and studied [Fe/H] metallicity to further confirm the membership of the candidates. We also made use of studies using recent data from the Gaia DR1 and DR2 releases to assess our member selections. Results. We identified likely member candidates for the sample of 20 clusters observed in GES (iDR4) with UVES and GIRAFFE, and conducted a comparative study that allowed us to characterize the properties of these members as well as identify field contaminant stars, both lithium-rich giants and non-giant outliers. Conclusions. This work is the first step towards the calibration of the lithium-age relation and its dependence on other GES parameters. During this project we aim to use this relation to infer the ages of GES field stars, and identify their potential membership to young associations and stellar kinematic groups of different ages. © ESO 2020.