Examinando por Autor "Sanz Forcada, J."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A giant exoplanet orbiting a very-low-mass star challenges planet formation models(American Association for the Advancement of Science, 2019-09-27) Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López González, M. J.; Rodríguez López, C.; Cifuentes, C.; Mordasini, C.; Jeffers, S. V.; Rix, H. W.; Ofir, A.; Kürster, M.; Henning, T.; Emsenhuber, A.; Passegger, V. M.; Abellán, F. J.; Rodríguez Trinidad, A.; Pedraz, S.; Aceituno, J.; Seifert, W.; Fernández Martín, A.; Zechmeister, M.; De Juan, E.; Perryman, M. A. C.; Antona, R.; Alonso Floriano, F. J.; Ferro, I. M.; Johnson, E. N.; Labiche, N.; Rebolo, R.; Becerril Jarque, S.; Azzaro, M.; Fuhrmeister, B.; Lizon, J. L.; Perger, M.; Brinkmöller, M.; Berdiñas, Z. M.; Galadí Enríquez, D.; López Santiago, J.; Cortés Contreras, M.; Calvo Ortega, R.; Del Burgo, C.; Gallardo Cava, I.; Rosich, A.; Cardona Guillén, C.; Cano, J.; García Vargas, M. L.; Amado, P. J.; Casanova, V.; Carro, J.; García Piquer, A.; Kaminski, A.; Chaturvedi, P.; Gesa, L.; Abril, M.; Claret, A.; González Álvarez, E.; Ammler von Eiff, M.; Czesla, S.; Barrado, D.; Dorda, R.; González Peinado, R.; Fernández Hernández, Maite; Klüter, J.; Kim, M.; Lara, L. M.; Lampón, M.; López del Fresno, M.; Lodieu, N.; Mancini, L.; Mall, U.; Martín Fernández, P.; Mirabet, E.; Nortmann, L.; Pallé, E.; Caballero, J. A.; Huke, P.; Huber, A.; Holgado, G.; Klutsch, A.; Launhardt, R.; López Salas, F. J.; Stürmer, J.; Suárez, J. C.; Tabernero, H.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Sánchez López, A.; Sánchez Blanco, E.; Sadegi, S.; Labarga, F.; Marfil, E.; Casasayas Barris, N.; Bergond, G.; Martín, E. L.; Mandel, H.; Sarkis, P.; Lázaro, F. J.; Luque, R.; Burn, R.; Marvin, E. L.; Martín Ruiz, S.; Sarmiento, L. F.; González Cuesta, L.; Anglada Escudé, G.; Cárdenas, M. C.; Nelson, R. P.; Moya, A.; Schäfer, S.; Reffert, S.; Casal, E.; Pascual, J.; Nowak, G.; Schlecker, M.; Quirrenbach, A.; Kemmer, J.; Pérez Medialdea, D.; Pavlov, A.; Schmitt, J. H. M. M.; Lalitha, S.; Rabaza, O.; Pérez Calpena, A.; Schöfer, P.; Llamas, M.; Redondo, P.; Ramón Ballesta, A.; Magán Madinabeitia, H.; Rodler, F.; Sota, A.; Marín Molina, J. A.; Sabotta, S.; Stahl, O.; Martínez Rodríguez, H.; Salz, M.; Stock, S.; Naranjo, V.; Sánchez Carrasco, M. A.; Stuber, T.; Sanz Forcada, J.; Johansen, A.; Baroch, D.; Lafarga, M.; Dreizler, S.; Tal Or, L.; Schweitzer, A.; Hagen, H. J.; Guenther, E. W.; Montes, D.; Aceituno, Francisco José; Arroyo Torres, B.; Benítez, D.; Kehr, M.; Béjar, V. J. S.; Zapatero Osorio, M. R.; Yan, F.; Klahr, H.; Nagel, E.; Trifonov, T.; Guàrdia, J.; Guijarro, A.; De Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero, F.; Hintz, D.; Díez Alonso, E.; Colomé, J.; González Hernández, Carmen; Solano, Enrique; Israel Science Foundation (ISF); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Swiss National Science Foundation (SNSF); Deutsches Zentrum für Luft- und Raumfahrt (DLR); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); European Research Council (ERC); Generalitat de Catalunya; Deutsche Forschungsgemeinschaft (DFG); Queen Mary University of London; Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Morales, J. C. [0000-0003-0061-518X]; Mustill, A. J. [0000-0002-2086-3642]; Ribas, I. [0000-0002-6689-0312]; Davies, M. B. [0000-0001-6080-1190]; Bauer, F. F. [0000-0003-1212-5225]; Herrrero, E. [0000-0001-8602-6639]; Rodríguez, E. [0000-0001-6827-9077]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; Luque, R. [0000-0002-4671-2957]; López Santiago, J. [0000-0003-2402-8166]; Perger, M. [0000-0001-7098-0372]; Guenther, E. W. [0000-0002-9130-6747]; Schmitt, J. H. M. M. [0000-0003-2554-9916]; Mordasini, C. [0000-0002-1013-2811]; Aceituno, J. [0000-0003-0487-1105]; Stock, S. [0000-0002-1166-9338]; Lafarga, M. [0000-0002-8815-9416]; Nagel, E. [0000-0002-4019-3631]; Barrado, D. [0000-0002-5971-9242]; Tulloch, S. [0000-0003-0840-8521]; Rosich, A. [0000-0002-9141-3067]; Trifonov, T. [0000-0002-0236-775X]; Bergond, G. [0000-0003-3132-9215]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Kaminski, A. [0000-0003-0203-8208]; Montes, D. [0000-0002-7779-238X]; Cano, J. [0000-0003-1984-5401]; Baroch, D. [0000-0001-7568-5161]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Sabotta, S. [0000-0001-9078-5574]; Ammler-von Eiff, M. [0000-0001-9565-1698]; Chaturvedi, P. [0000-0002-1887-1192]; Anglada Escudé, G. [0000-0002-3645-5977]; Becerril Jarque, S. [0000-0001-9009-1150]; Díez Alonso, E. [0000-0002-5826-9892]; Passegger, V. M. [0000-0002-8569-7243]; Burn, R. [0000-0002-9020-7309]; García Vargas, M. L. [0000-0002-2058-3528]; Amado, P. J. [0000-0002-8388-6040]; Cardona Guillén, C. [0000-0002-2198-4200]; Carro, J. [0000-0002-0838-3603]; Guàrdia, J. [0000-0002-7191-9001]; Abellán, F. J. [0000-0002-5724-1636]; Cifuentes, C. [0000-0003-1715-5087]; Colomé, J. [0000-0002-1678-2241]; Hermelo, I. [0000-0001-9178-694X]; Arroyo Torres, B. [0000-0002-3392-4694]; Emsenhuber, A. [0000-0002-8811-1914]; Fuhrmeister, B. [0000-0001-8321-5514]; Johnson, E. [0000-0003-2260-5134]; Berdiñas, Z. M. [0000-0002-6057-6461]; González Álvarez, E. [0000-0002-4820-2053]; González Cuesta, L. [0000-0002-1241-5508]; González Hernández, J. I. [0000-0002-0264-7356]; Klüter, J. [0000-0002-3469-5133]; Calvo Ortega, R. [0000-0003-3693-6030]; Guijarro, A. [0000-0001-5518-1759]; Lara, L. M. [0000-0002-7184-920X]; Casasayas Barris, N. [0000-0002-2891-8222]; Hintz, D. [0000-0002-5274-2589]; López del Fresno, M. [0000-0002-9479-7780]; Czesla, S. [0000-0002-4203-4773]; De Juan Fernández, E. [0000-0002-9382-4505]; Kehr, M. [0000-0002-7420-7368]; Marín Molina, J. A. [0000-0002-3525-0806]; Galadí Enríquez, D. [0000-0003-4946-5653]; Klutsch, A. [0000-0001-7869-3888]; Labarga, F. [0000-0002-7143-0206]; Martínez Rodríguez, H. [0000-0002-1919-228X]; González Peinado, R. [0000-0002-6658-8930]; Launhardt, R. [0000-0002-8298-2663]; Lizon, J. L. [0000-0001-8928-2566]; Naranjo, V. [0000-0003-0097-1061]; De Guindos, E. [0000-0002-8124-9101]; Magan Madinabeitia, H. [0000-0003-1243-4597]; Aceituno, F. J. [0000-0001-8074-4760]; Manici, L. [0000-0002-9428-8732]; Ofir, A. [0000-0002-9152-5042]; Huke, P. [0000-0001-5913-2743]; Martín, E. [0000-0002-1208-4833]; Rabaza, O. [0000-0003-2766-2103]; Kim, M. [0000-0001-6218-2004]; Marvin, C. J. [0000-0002-2249-2611]; Rodríguez Trinidad, A. [0000-0002-3356-8634]; Lampón, M. [0000-0002-0183-7158]; Nelson, R. [0000-0002-9687-8779]; Nortmann, L. [0000-0001-8419-8760]; Sanz Forcada, J. [0000-0002-1600-7835]; Lodieu, N. [0000-0002-3612-8968]; Pascual Granado, J. [0000-0003-0139-6951]; Pedraz, S. [0000-0003-1346-208X]; Schäfer, S. [0000-0001-8597-8048]; Marfil, E. [0000-0001-8907-4775]; Ramón Ballesta, A. [0000-0002-4323-0610]; Redondo, P. G. [0000-0001-5992-5778]; Schöfer, P. [0000-0002-5969-3708]; Martín Ruiz, S. [0000-0002-9006-7182]; Sadegi, S. [0000-0001-9897-6121]; García Piquer, A. [0000-0002-6872-4262]; Sánchez Carrasco, M. A. [0000-0001-5533-3660]; Stuber, T. [0000-0003-2185-0525]; Moya, A. [0000-0003-1665-5389]; Sarkis, P. [0000-0001-8128-3126]; Vilardell, F. [0000-0003-0441-1504]; Nowak, G. [0000-0002-7031-7754]; Schlecker, M. [0000-0001-8355-2107]; Béjar, V. J. S. [0000-0002-5086-4232]; Pérez Calpena, A. [0000-0001-7361-9240]; Solano, E. [0000-0003-1885-5130]; Sota, A. [https://orcid.org/0000-0002-9404-6952]; Klahr, H. [0000-0002-8227-5467]; Rodler, F. [0000-0003-0650-5723]; Suárez, J. C. [0000-0003-3649-8384]; Tabernero, H. [0000-0002-8087-4298]; Cortés Contreras, M. [0000-0003-3734-9866]; Sánchez López, A. [0000-0002-0516-7956]; Winkler, J. [0000-0003-0568-8820]; Yan, F. [0000-0001-9585-9034]; Reffert, S. [0000-0002-0460-8289]; Sarmiento, L. F. [0000-0002-8475-9705]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of SciencePublicación Acceso Abierto CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions(EDP Sciences, 2020-10-12) Cifuentes, C.; Caballero, J. A.; Cortés Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz Forcada, J.; Schweitzer, A.; Seifert, W.; Solano, Enrique; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); 0000-0003-1715-5087; 0000-0002-7349-1387; 0000-0003-3734-9866; 0000-0002-7779-238X; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The relevance of M dwarfs in the search for potentially habitable Earth-sized planets has grown significantly in the last years. Aims. In our on-going effort to comprehensively and accurately characterise confirmed and potential planet-hosting M dwarfs, in particular for the CARMENES survey, we have carried out a comprehensive multi-band photometric analysis involving spectral energy distributions, luminosities, absolute magnitudes, colours, and spectral types, from which we have derived basic astrophysical parameters. Methods. We have carefully compiled photometry in 20 passbands from the ultraviolet to the mid-infrared, and combined it with the latest parallactic distances and close-multiplicity information, mostly from Gaia DR2, of a sample of 2479 K5 V to L8 stars and ultracool dwarfs, including 2210 nearby, bright M dwarfs. For this, we made extensive use of Virtual Observatory tools. Results. We have homogeneously computed accurate bolometric luminosities and effective temperatures of 1843 single stars, derived their radii and masses, studied the impact of metallicity, and compared our results with the literature. The over 40 000 individually inspected magnitudes, together with the basic data and derived parameters of the stars, individual and averaged by spectral type, have been made public to the astronomical community. In addition, we have reported 40 new close multiple systems and candidates (ρ < 3.3 arcsec) and 36 overluminous stars that are assigned to young Galactic populations. Conclusions. In the new era of exoplanet searches around M dwarfs via transit (e.g. TESS, PLATO) and radial velocity (e.g. CARMENES, NIRPS+HARPS), this work is of fundamental importance for stellar and therefore planetary parameter determination. © ESO 2020.Publicación Acceso Abierto Evidence of a Clear Atmosphere for WASP-62b: The Only Known Transiting Gas Giant in the JWST Continuous Viewing Zone(IOP Science Publishing, 2021-01-11) Alam, M. K.; López Morales, M.; MacDonald, R. J.; Nikolov, N.; Kirk, J.; Goyal, J. M.; Sing, D. K.; Wakeford, H. R.; Rathcke, A. D.; Deming, D. L.; Sanz Forcada, J.; Lewis, N. K.; Barstow, J. K.; Mikal Evans, T.; Buchhave, L. A.; National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); Agencia Estatal de Investigación (AEI); Alam, M. K. [0000-0003-4157-832X]; López Morales, M. [0000-0003-3204-8183]; MacDonald, R. J. [0000-0003-4816-3469]; Nikolov, N. [0000-0002-6500-3574]; Kirk, J. [0000-0002-4207-6615]; Goyal, J. M. [0000-0002-8515-7204]; Sing, D. K. [0000-0001-6050-7645]; Wakeford, H. R. [0000-0003-4328-3867]; Rathcke, A. D. [0000-0002-4227-4953]; Deming, D. L. [0000-0001-5727-4094]; Sanz Forcada, J. [0000-0002-1600-7835]; Lewis, N. K. [0000-0002-8507-1304]; Barstow, J. K. [0000-0003-3726-5419]; Mikal Evans, T. [0000-0001-5442-1300]; Buchhave, L. A. [0000-0003-1605-5666]Exoplanets with cloud-free, haze-free atmospheres at the pressures probed by transmission spectroscopy represent a valuable opportunity for detailed atmospheric characterization and precise chemical abundance constraints. We present the first optical to infrared (0.3−5 μm) transmission spectrum of the hot Jupiter WASP-62b, measured with Hubble/STIS and Spitzer/IRAC. The spectrum is characterized by a 5.1σ detection of Na i absorption at 0.59 μm, in which the pressure-broadened wings of the Na D-lines are observed from space for the first time. A spectral feature at 0.4 μm is tentatively attributed to SiH at 2.1σ confidence. Our retrieval analyses are consistent with a cloud-free atmosphere without significant contamination from stellar heterogeneities. We simulate James Webb Space Telescope (JWST) observations, for a combination of instrument modes, to assess the atmospheric characterization potential of WASP-62b. We demonstrate that JWST can conclusively detect Na, H2O, FeH, NH3, CO, CO2, CH4, and SiH within the scope of its Early Release Science (ERS) program. As the only transiting giant planet currently known in the JWST Continuous Viewing Zone, WASP-62b could prove a benchmark giant exoplanet for detailed atmospheric characterization in the James Webb era.Publicación Acceso Abierto HST PanCET Program: A Complete Near-UV to Infrared Transmission Spectrum for the Hot Jupiter WASP-79b(IOP Science Publishing, 2021-09-10) Rathcke, A. D.; MacDonald, R. J.; Barstow, J. K.; Goyal, J. M.; López Morales, M.; Mendoça, J. M.; Sanz Forcada, J.; Henry, G. W.; Sing, D. K.; Alam, M. K.; Agencia Estatal de Investigación (AEI); Rathcke, A. D. [0000-0002-4227-4953]; MacDonald, R. J. [0000-0003-4816-3469]; Barstow, J. K. [0000-0003-3726-5419]; Goyal, J. M. [0000-0002-8515-7204]; López Morales, M. [0000-0003-3204-8183]; Mendoça, J. M. [0000-0002-6907-4476]; Sanz Forcada, J. [0000-0002-1600-7835]; Henry, G. W. [0000-0003-4155-8513]; Sing, D. K. [0000-0001-6050-7645]; Alam, M. K. [0000-0003-4157-832X]; Lewis, N. K. [0000-0002-8507-1304]; Chubb, K. L. [0000-0002-4552-4559]; Taylor, J. [0000-0003-4844-9838]; Nikolov, N. [0000-0002-6500-3574]; Buchhave, L. A. [0000-0003-1605-5666]We present a new optical transmission spectrum of the hot Jupiter WASP-79b. We observed three transits with the STIS instrument mounted on the Hubble Space Telescope (HST), spanning 0.3–1.0 μm. Combining these transits with previous observations, we construct a complete 0.3–5.0 μm transmission spectrum of WASP-79b. Both HST and ground-based observations show decreasing transit depths toward blue wavelengths, contrary to expectations from Rayleigh scattering or hazes. We infer atmospheric and stellar properties from the full near-UV to infrared transmission spectrum of WASP-79b using three independent retrieval codes, all of which yield consistent results. Our retrievals confirm previous detections of H2O (at 4.0σ confidence) while providing moderate evidence of H− bound–free opacity (3.3σ) and strong evidence of stellar contamination from unocculted faculae (4.7σ). The retrieved H2O abundance (∼1%) suggests a superstellar atmospheric metallicity, though stellar or substellar abundances remain consistent with present observations (O/H = 0.3–34× stellar). All three retrieval codes obtain a precise H− abundance constraint: log(${X}_{{{\rm{H}}}^{-}}$) ≈ −8.0 ± 0.7. The potential presence of H− suggests that James Webb Space Telescope observations may be sensitive to ionic chemistry in the atmosphere of WASP-79b. The inferred faculae are ∼500 K hotter than the stellar photosphere, covering ∼15% of the stellar surface. Our analysis underscores the importance of observing UV–optical transmission spectra in order to disentangle the influence of unocculted stellar heterogeneities from planetary transmission spectra.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs The He I triplet at 10830 Å across the M dwarf sequence(EDP Sciences, 2019-11-25) Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, H. M. M.; Hintz, D.; Johnson, E. N.; Sanz Forcada, J.; Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.; Béjar, V. J. S.; Cortés Contreras, M.; Díez Alonso, E.; Dreizler, S.; Galadí Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Deutsche Forschungsgemeinschaft (DFG); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Ribas, I. [0000-0002-6689-0312]; Montes, D. [0000-0002-7779-238X]; Lafarga, M. [0000-0002-8815-9416]; Amado, P. [0000-0001-8012-3788]; Nagel, E. [0000-0002-4019-3631]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548The He I infrared (IR) triplet at 10 830 Å is an important activity indicator for the Sun and in solar-type stars, however, it has rarely been studied in relation to M dwarfs to date. In this study, we use the time-averaged spectra of 319 single stars with spectral types ranging from M0.0 V to M9.0 V obtained with the CARMENES high resolution optical and near-infrared spectrograph at Calar Alto to study the properties of the He I IR triplet lines. In quiescence, we find the triplet in absorption with a decrease of the measured pseudo equivalent width (pEW) towards later sub-types. For stars later than M5.0 V, the He I triplet becomes undetectable in our study. This dependence on effective temperature may be related to a change in chromospheric conditions along the M dwarf sequence. When an emission in the triplet is observed, we attribute it to flaring. The absence of emission during quiescence is consistent with line formation by photo-ionisation and recombination, while flare emission may be caused by collisions within dense material. The He I triplet tends to increase in depth according to increasing activity levels, ultimately becoming filled in; however, we do not find a correlation between the pEW(He IR) and X-ray properties. This behaviour may be attributed to the absence of very inactive stars (LX∕Lbol < −5.5) in our sample or to the complex behaviour with regard to increasing depth and filling in.Publicación Acceso Abierto The Hubble PanCET Program: A Metal-rich Atmosphere for the Inflated Hot Jupiter HAT-P-41b(IOP Science Publishing, 2021-01-06) Sheppard, K. B.; Welbanks, L.; Mandell, A. M.; Madhusudhan, N.; Nikolov, N.; Deming, D. L.; Henry, G. W.; Williamson, M. H.; Sing, D. K.; López Morales, M.; Ih, J.; Sanz Forcada, J.; Lavvas, P.; Ballester, G. E.; Evans, T. M.; García Muñoz, Antonio; Dos Santos, L. A.; National Aeronautics and Space Administration (NASA); Sheppard, K. B. [0000-0003-4552-9541]; Welbanks, L. [0000-0003-0156-4564]; Mandell, A. M. [0000-0002-8119-3355]; Madhusudhan, M. [0000-0002-4869-000X]; Nikolov, N. [0000-0002-6500-3574]; Deming, D. [0000-0001-5727-4094]; Sing, D. K. [0000-0001-6050-7645]; Henry, G. W. [0000-0003-4155-8513]; López Morales, M. [0000-0003-3204-8183]; Ih, J. [0000-0003-2775-653X]; Sanz Forcada, J. [0000-0002-1600-7835]; Lavvas, P. [0000-0002-5360-3660]; Evans, T. M. [0000-0001-5442-1300]; García Muñoz, A. [0000-0003-1756-4825]; Dos Santos, L. A. [0000-0002-2248-3838]We present a comprehensive analysis of the 0.3–5 μm transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program, and we combine those data with warm Spitzer transit observations. We extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29–0.93 μm) for the first time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day–night terminator. Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich atmosphere for almost all model assumptions (most likely O/H ratio of ${\mathrm{log}}_{10}Z/{Z}_{\odot }={1.46}_{-0.68}^{+0.53}$ and ${\mathrm{log}}_{10}Z/{Z}_{\odot }={2.33}_{-0.25}^{+0.23}$, respectively); this is driven by a 4.9σ detection of H2O as well as evidence of gas absorption in the optical (>2.7σ detection) due to Na, AlO, and/or VO/TiO, though no individual species is strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity (${\mathrm{log}}_{10}Z/{Z}_{\odot }\lt 1.7$) favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity and high inflation make HAT-P-41b an interesting test case for planet formation theories.Publicación Acceso Abierto The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab(The Institute of Physics (IOP), 2020-07-02) Alam, M. K.; López Morales, M.; Nikolov, N.; Sing, D. K.; Henry, G. W.; Baxter, C.; Désert, J. M.; Barstow, J. K.; Mikal Evans, T.; Bourrier, V.; Lavvas, P.; Wakeford, H. R.; Williamson, M. H.; Sanz Forcada, J.; Buchhave, L. A.; Cohen, O.; García Muñoz, Antonio; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Alam, M. K. [0000-0003-4157-832X]; López Morales, M. [0000-0003-3204-8183]; Nikolov, N. [0000-0002-6500-3574]; Sing, D. K. [0000-0001-6050-7645]; Henry, G. W. [0000-0003-4155-8513]; Baxter, C. [0000-0003-3438-843X]; Désert, J. M. [0000-0002-0875-8401]; Barstow, J. K. [0000-0003-3726-5419]; Mikal Evans, T. [0000-0001-5442-1300]; Bourrier, V. [0000-0002-9148-034X]; Lavvas, P. [0000-0002-5360-3660]; Wakeford, H. R. [0000-0003-4328-3867]; Forcada, J. S. [0000-0002-1600-7835]; Buchhave, L. A. [0000-0003-1605-5666]; Cohen, O. [0000-0003-3721-0215]; García Muñoz, A. [0000-0003-1756-4825]We present a 0.3−5 μm transmission spectrum of the hot Jupiter HAT-P-32Ab observed with the Space Telescope Imaging Spectrograph and Wide Field Camera 3 instruments mounted on the Hubble Space Telescope, combined with Spitzer Infrared Array Camera photometry. The spectrum is composed of 51 spectrophotometric bins with widths ranging between 150 and 400 Å, measured to a median precision of 215 ppm. Comparisons of the observed transmission spectrum to a grid of 1D radiative-convective equilibrium models indicate the presence of clouds/hazes, consistent with previous transit observations and secondary eclipse measurements. To provide more robust constraints on the planet's atmospheric properties, we perform the first full optical to infrared retrieval analysis for this planet. The retrieved spectrum is consistent with a limb temperature of ${1248}_{-92}^{+92}$ K, a thick cloud deck, enhanced Rayleigh scattering, and ~10× solar H2O abundance. We find log(Z/Z⊙) = ${2.41}_{-0.07}^{+0.06}$, and compare this measurement with the mass–metallicity relation derived for the solar system.Publicación Acceso Abierto WASP-52b. The effect of star-spot correction on atmospheric retrievals(Oxford Academics: Oxford University Press, 2019-11-18) Bruno, G.; Lewis, N. K.; Alam, M. K.; López Morales, M.; Barstow, J. K.; Wakeford, H. R.; Sing, D. K.; Henry, G. W.; Ballester, G. E.; Bourrier, V.; Buchhave, L. A.; Cohen, O.; Mikal Evans, T.; García Muñoz, Antonio; Lavvas, P.; Sanz Forcada, J.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Buchhave, L. A. [0000-0003-1605-5666]; Bruno, G. [0000-0002-3288-0802]; Sing, D. [0000-0001-6050-7645]; Mikal Evans, T. [0000-0001-5442-1300]; Alam, M. [0000-0003-4157-832X]; Wakeford, H. [0000-0003-4328-3867]We perform atmospheric retrievals on the full optical to infrared (0.3−5μm) transmission spectrum of the inflated hot Jupiter WASP-52b by combining HST/STIS, WFC3 IR, and Spitzer/IRAC observations. As WASP-52 is an active star that shows both out-of-transit photometric variability and star-spot crossings during transits, we account for the contribution of non-occulted active regions in the retrieval. We recover a 0.1–10× solar atmospheric composition, in agreement with core accretion predictions for giant planets, and no significant contribution of aerosols. We also obtain a <3000 K temperature for the star-spots, a measure which is likely affected by the models used to fit instrumental effects in the transits, and a 5 per cent star-spot fractional coverage, compatible with expectations for the host star’s spectral type. Such constraints on the planetary atmosphere and on the activity of its host star will inform future JWST GTO observations of this target.