Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Sabau, L."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 2 de 2
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónRestringido
    OSIRIS – The Scientific Camera System Onboard Rosetta
    (Springer Link, 2007-01-12) Keller, H. U.; Barbieri, C.; Lamy, Philippe; Rickman, H.; Rodrigo, Rafael; Wenzel, K. P.; Sierks, H.; A´Hearn, M. F.; Angrilli, F.; Angulo, M.; Bailey, M. E.; Barthol, P.; Barucci, M. A.; Bertaux, J. L.; Bianchini, G.; Boit, J. L.; Brown, V.; Burns, J. A.; Büttner, I.; Castro, J. M.; Cremonese, G.; Curdt, W.; Da Deppo, V.; Debei, S.; De Cecco, M.; Dohlen, K.; Fornasier, S.; Fulle, M.; Germerott, D.; Gliem, F.; Guizzo, G. P.; Hviid, S. F.; Ip, W. H.; Jorda, L.; Koschny, D.; kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Llebaria, A.; López, A.; López Jiménez, A.; López Moreno, J. J.; Meller, R.; Michalik, H.; Díaz Michelena, M.; Müller, R.; Naletto, G.; Origné, A.; Parzianello, G.; Pertile, M.; Quintana, C.; Ragazzoni, R.; Ramous, P.; Reiche, K. U.; Reina, M.; Rodríguez, J.; Rousset, G.; Sabau, L.; Sivan, J. P.; Stöckner, K.; Telljohann, U.; Thomas, N.; Timón, V.; Tomasch, G.; Wittrock, T.; Zaccariotto, M.; Sanz de la Rosa, Andrea
    The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 67P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    OWLS: a ten-year history in optical wireless links for intra-satellite communications
    (Institute of Electrical and Electronics Engineers 27(9): 1599-1611(2009), 2009-12-10) Arruego, I.; Guerrero, H.; Rodríguez, Santiago; Martínez Oter, J.; Jiménez, J. J.; Domínguez, J. A.; Rivas, J.; Álvarez, M. T.; Gallego, P.; Azcue, J.; Ruiz de Galarreta, C.; Martín, B.; Álvarez Herrero, A.; Díaz Michelena, M.; Martín, I.; Tamayo, R.; Reina, M.; Gutiérrez, M. J.; Sabau, L.; Torres, J.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Apéstigue, Víctor; Sánchez - Valdepeñas García - Moreno, Jesús; Samblas Iglesias, Juan
    The application of Optical Wireless Links to intra- Spacecraft communications (OWLS) is presented here. This work summarizes ten years of developments, ranging from basic optoelectronic parts and front-end electronics, to different inorbit demonstrations. Several wireless applications were carried out in representative environments at ground level, and on in-flight experiments. A completely wireless satellite will be launched at the beginning of 2010. The benefits of replacing standard data wires and connectors with wireless systems are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases (AIT). However, the Aerospace and Defense fields need high reliability solutions. The use of COTS (Commercial-Off-The- Shelf) parts in these fields require extensive analyses in order to attain full product assurance. The current commercial optical wireless technology needs a deep transformation in order to be fully applicable in the aforementioned fields. Finally, major breakthroughs for the implementation of optical wireless links in Space will not be possible until dedicated circuits such as mixed analog/digital ASICs are developed. Once these products become available, it will also be possible to extend optical wireless links to other applications, such as Unmanned Air and Underwater Vehicles (UAV and UUV). The steps taken by INTA to introduce Optical Wireless Links in the Space environment are presented in this paper.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias