Examinando por Autor "Quirrenbach, A."
Mostrando 1 - 20 de 25
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A giant exoplanet orbiting a very-low-mass star challenges planet formation models(American Association for the Advancement of Science, 2019-09-27) Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López González, M. J.; Rodríguez López, C.; Cifuentes, C.; Mordasini, C.; Jeffers, S. V.; Rix, H. W.; Ofir, A.; Kürster, M.; Henning, T.; Emsenhuber, A.; Passegger, V. M.; Abellán, F. J.; Rodríguez Trinidad, A.; Pedraz, S.; Aceituno, J.; Seifert, W.; Fernández Martín, A.; Zechmeister, M.; De Juan, E.; Perryman, M. A. C.; Antona, R.; Alonso Floriano, F. J.; Ferro, I. M.; Johnson, E. N.; Labiche, N.; Rebolo, R.; Becerril Jarque, S.; Azzaro, M.; Fuhrmeister, B.; Lizon, J. L.; Perger, M.; Brinkmöller, M.; Berdiñas, Z. M.; Galadí Enríquez, D.; López Santiago, J.; Cortés Contreras, M.; Calvo Ortega, R.; Del Burgo, C.; Gallardo Cava, I.; Rosich, A.; Cardona Guillén, C.; Cano, J.; García Vargas, M. L.; Amado, P. J.; Casanova, V.; Carro, J.; García Piquer, A.; Kaminski, A.; Chaturvedi, P.; Gesa, L.; Abril, M.; Claret, A.; González Álvarez, E.; Ammler von Eiff, M.; Czesla, S.; Barrado, D.; Dorda, R.; González Peinado, R.; Fernández Hernández, Maite; Klüter, J.; Kim, M.; Lara, L. M.; Lampón, M.; López del Fresno, M.; Lodieu, N.; Mancini, L.; Mall, U.; Martín Fernández, P.; Mirabet, E.; Nortmann, L.; Pallé, E.; Caballero, J. A.; Huke, P.; Huber, A.; Holgado, G.; Klutsch, A.; Launhardt, R.; López Salas, F. J.; Stürmer, J.; Suárez, J. C.; Tabernero, H.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Sánchez López, A.; Sánchez Blanco, E.; Sadegi, S.; Labarga, F.; Marfil, E.; Casasayas Barris, N.; Bergond, G.; Martín, E. L.; Mandel, H.; Sarkis, P.; Lázaro, F. J.; Luque, R.; Burn, R.; Marvin, E. L.; Martín Ruiz, S.; Sarmiento, L. F.; González Cuesta, L.; Anglada Escudé, G.; Cárdenas, M. C.; Nelson, R. P.; Moya, A.; Schäfer, S.; Reffert, S.; Casal, E.; Pascual, J.; Nowak, G.; Schlecker, M.; Quirrenbach, A.; Kemmer, J.; Pérez Medialdea, D.; Pavlov, A.; Schmitt, J. H. M. M.; Lalitha, S.; Rabaza, O.; Pérez Calpena, A.; Schöfer, P.; Llamas, M.; Redondo, P.; Ramón Ballesta, A.; Magán Madinabeitia, H.; Rodler, F.; Sota, A.; Marín Molina, J. A.; Sabotta, S.; Stahl, O.; Martínez Rodríguez, H.; Salz, M.; Stock, S.; Naranjo, V.; Sánchez Carrasco, M. A.; Stuber, T.; Sanz Forcada, J.; Johansen, A.; Baroch, D.; Lafarga, M.; Dreizler, S.; Tal Or, L.; Schweitzer, A.; Hagen, H. J.; Guenther, E. W.; Montes, D.; Aceituno, Francisco José; Arroyo Torres, B.; Benítez, D.; Kehr, M.; Béjar, V. J. S.; Zapatero Osorio, M. R.; Yan, F.; Klahr, H.; Nagel, E.; Trifonov, T.; Guàrdia, J.; Guijarro, A.; De Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero, F.; Hintz, D.; Díez Alonso, E.; Colomé, J.; González Hernández, Carmen; Solano, Enrique; Israel Science Foundation (ISF); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Swiss National Science Foundation (SNSF); Deutsches Zentrum für Luft- und Raumfahrt (DLR); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); European Research Council (ERC); Generalitat de Catalunya; Deutsche Forschungsgemeinschaft (DFG); Queen Mary University of London; Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Morales, J. C. [0000-0003-0061-518X]; Mustill, A. J. [0000-0002-2086-3642]; Ribas, I. [0000-0002-6689-0312]; Davies, M. B. [0000-0001-6080-1190]; Bauer, F. F. [0000-0003-1212-5225]; Herrrero, E. [0000-0001-8602-6639]; Rodríguez, E. [0000-0001-6827-9077]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; Luque, R. [0000-0002-4671-2957]; López Santiago, J. [0000-0003-2402-8166]; Perger, M. [0000-0001-7098-0372]; Guenther, E. W. [0000-0002-9130-6747]; Schmitt, J. H. M. M. [0000-0003-2554-9916]; Mordasini, C. [0000-0002-1013-2811]; Aceituno, J. [0000-0003-0487-1105]; Stock, S. [0000-0002-1166-9338]; Lafarga, M. [0000-0002-8815-9416]; Nagel, E. [0000-0002-4019-3631]; Barrado, D. [0000-0002-5971-9242]; Tulloch, S. [0000-0003-0840-8521]; Rosich, A. [0000-0002-9141-3067]; Trifonov, T. [0000-0002-0236-775X]; Bergond, G. [0000-0003-3132-9215]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Kaminski, A. [0000-0003-0203-8208]; Montes, D. [0000-0002-7779-238X]; Cano, J. [0000-0003-1984-5401]; Baroch, D. [0000-0001-7568-5161]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Sabotta, S. [0000-0001-9078-5574]; Ammler-von Eiff, M. [0000-0001-9565-1698]; Chaturvedi, P. [0000-0002-1887-1192]; Anglada Escudé, G. [0000-0002-3645-5977]; Becerril Jarque, S. [0000-0001-9009-1150]; Díez Alonso, E. [0000-0002-5826-9892]; Passegger, V. M. [0000-0002-8569-7243]; Burn, R. [0000-0002-9020-7309]; García Vargas, M. L. [0000-0002-2058-3528]; Amado, P. J. [0000-0002-8388-6040]; Cardona Guillén, C. [0000-0002-2198-4200]; Carro, J. [0000-0002-0838-3603]; Guàrdia, J. [0000-0002-7191-9001]; Abellán, F. J. [0000-0002-5724-1636]; Cifuentes, C. [0000-0003-1715-5087]; Colomé, J. [0000-0002-1678-2241]; Hermelo, I. [0000-0001-9178-694X]; Arroyo Torres, B. [0000-0002-3392-4694]; Emsenhuber, A. [0000-0002-8811-1914]; Fuhrmeister, B. [0000-0001-8321-5514]; Johnson, E. [0000-0003-2260-5134]; Berdiñas, Z. M. [0000-0002-6057-6461]; González Álvarez, E. [0000-0002-4820-2053]; González Cuesta, L. [0000-0002-1241-5508]; González Hernández, J. I. [0000-0002-0264-7356]; Klüter, J. [0000-0002-3469-5133]; Calvo Ortega, R. [0000-0003-3693-6030]; Guijarro, A. [0000-0001-5518-1759]; Lara, L. M. [0000-0002-7184-920X]; Casasayas Barris, N. [0000-0002-2891-8222]; Hintz, D. [0000-0002-5274-2589]; López del Fresno, M. [0000-0002-9479-7780]; Czesla, S. [0000-0002-4203-4773]; De Juan Fernández, E. [0000-0002-9382-4505]; Kehr, M. [0000-0002-7420-7368]; Marín Molina, J. A. [0000-0002-3525-0806]; Galadí Enríquez, D. [0000-0003-4946-5653]; Klutsch, A. [0000-0001-7869-3888]; Labarga, F. [0000-0002-7143-0206]; Martínez Rodríguez, H. [0000-0002-1919-228X]; González Peinado, R. [0000-0002-6658-8930]; Launhardt, R. [0000-0002-8298-2663]; Lizon, J. L. [0000-0001-8928-2566]; Naranjo, V. [0000-0003-0097-1061]; De Guindos, E. [0000-0002-8124-9101]; Magan Madinabeitia, H. [0000-0003-1243-4597]; Aceituno, F. J. [0000-0001-8074-4760]; Manici, L. [0000-0002-9428-8732]; Ofir, A. [0000-0002-9152-5042]; Huke, P. [0000-0001-5913-2743]; Martín, E. [0000-0002-1208-4833]; Rabaza, O. [0000-0003-2766-2103]; Kim, M. [0000-0001-6218-2004]; Marvin, C. J. [0000-0002-2249-2611]; Rodríguez Trinidad, A. [0000-0002-3356-8634]; Lampón, M. [0000-0002-0183-7158]; Nelson, R. [0000-0002-9687-8779]; Nortmann, L. [0000-0001-8419-8760]; Sanz Forcada, J. [0000-0002-1600-7835]; Lodieu, N. [0000-0002-3612-8968]; Pascual Granado, J. [0000-0003-0139-6951]; Pedraz, S. [0000-0003-1346-208X]; Schäfer, S. [0000-0001-8597-8048]; Marfil, E. [0000-0001-8907-4775]; Ramón Ballesta, A. [0000-0002-4323-0610]; Redondo, P. G. [0000-0001-5992-5778]; Schöfer, P. [0000-0002-5969-3708]; Martín Ruiz, S. [0000-0002-9006-7182]; Sadegi, S. [0000-0001-9897-6121]; García Piquer, A. [0000-0002-6872-4262]; Sánchez Carrasco, M. A. [0000-0001-5533-3660]; Stuber, T. [0000-0003-2185-0525]; Moya, A. [0000-0003-1665-5389]; Sarkis, P. [0000-0001-8128-3126]; Vilardell, F. [0000-0003-0441-1504]; Nowak, G. [0000-0002-7031-7754]; Schlecker, M. [0000-0001-8355-2107]; Béjar, V. J. S. [0000-0002-5086-4232]; Pérez Calpena, A. [0000-0001-7361-9240]; Solano, E. [0000-0003-1885-5130]; Sota, A. [https://orcid.org/0000-0002-9404-6952]; Klahr, H. [0000-0002-8227-5467]; Rodler, F. [0000-0003-0650-5723]; Suárez, J. C. [0000-0003-3649-8384]; Tabernero, H. [0000-0002-8087-4298]; Cortés Contreras, M. [0000-0003-3734-9866]; Sánchez López, A. [0000-0002-0516-7956]; Winkler, J. [0000-0003-0568-8820]; Yan, F. [0000-0001-9585-9034]; Reffert, S. [0000-0002-0460-8289]; Sarmiento, L. F. [0000-0002-8475-9705]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of SciencePublicación Restringido A nearby transiting rocky exoplanet that is suitable for atmospheric investigation(Science, 2021-03-05) Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Reiners, A.; Bean, J. L.; Luque, R.; Parviainen, H.; Pallé, E.; Stock, S.; Zechmeister, M.; Amado, P. J.; Anglada Escudé, G.; Azzaro, M.; Barclay, T.; Béjar, V. J. S.; Bluhm, P.; Casasayas Barris, N.; Cifuentes, C.; Collins, K. A.; Collins, K. I.; Cortés Contreras, M.; De Leon, J. P.; Dreizler, S.; Dressing, C. D.; Esparza Borges, E.; Espinoza, N.; Fausnaugh, M.; Fukui, A.; Hatzes, A. P.; Hellier, C.; Henning, T.; Henze, C. E.; Herrero, E.; Jeffers, S. V.; Jenkins, J. M.; Jensen, E. L. N.; Kaminski, A.; Kasper, D.; Kossakowski, D.; Kürster, M.; Lafarga, M.; Latham, D. W.; Mann, A. W.; Molaverdikhani, K.; Montes, D.; Montet, B. T.; Murgas Alcaino, F.; Narita, N.; Oshagh, M.; Passegger, V. M.; Pollacco, D.; Quinn, S. N.; Quirrenbach, A.; Ricker, G. R.; Rodríguez López, C.; Sánz Forcada, J.; Schwarz, R. P.; Schweitzer, A.; Seager, S.; Shporer, A.; Stangret, M.; Stürmer, J.; Tan, T. G.; Tenenbaum, P.; Twicken, J. D.; Vanderspek, R.; Winn, J. N.; Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Japan Society for the Promotion of Science (JSPS); La Caixa; Japan Science and Technology Agency (JST); Trifonov, T. [0000-0002-0236-775X]; Caballero, J. A. [0000-0002-7349-1387]; Morales, J. C. [0000-0003-0061-518X]; Seifahrt, A. [0000-0003-4526-3747]; Ribas, I. [0000-0002-6689-0312]; Bean, J. [0000-0003-4733-6532]; Luque, R. [0000-0002-4671-2957]; Parviainen, H. [0000-0001-5519-1391]; Pallé, E. [0000-0003-0987-1593]; Stock, S. [0000-0002-1166-9338]; Zechmeister, M. [0000-0002-6532-4378]; Amado, P. J. [0000-0002-8388-6040]; Anglada Escudé, G. [0000-0002-3645-5977]; Azzaro, M. [0000-0002-1317-0661]; Barclay, T. [0000-0001-7139-2724]; Béjar, V. J. S. [0000-0002-5086-4232]; Bluhm, P. [0000-0002-0374-8466]; Casasayas Barris, N. [0000-0002-2891-8222]; Cifuentes, C. [0000-0003-1715-5087]; Collins, K. A. [0000-0001-6588-9574]; Collins, K. I. [0000-0003-2781-3207]; Cortés Contreras, M. [0000-0003-3734-9866]; Dreizler, S. [0000-0001-6187-5941]; Dressing, C. D. [0000-0001-8189-0233]; Esparza Borges, E. [0000-0002-2341-3233]; Espinoza, N. [0000-0001-9513-1449]; Fausnaugh, M. [0000-0002-9113-7162]; Fukui, A. [0000-0002-4909-5763]; Hatzes, A. P. [0000-0002-3404-8358]; Hellier, C. [0000-0002-3439-1439]; Henning, T. [0000-0002-1493-300X]; Herrero, E. [0000-0001-8602-6639]; Jeffers, S. V. [0000-0003-2490-4779]; Jenkins, J. M. [0000-0002-4715-9460]; Jensen, E. L. N. [0000-0002-4625-7333]; Kaminski, A. [0000-0003-0203-8208]; Kasper, D. [0000-0003-0534-6388]; Kossakowski, D. [0000-0002-0436-7833]; Lafarga, M. [0000-0002-8815-9416]; Latham, D. W. [0000-0001-9911-7388]; Mann, A. W. [0000-0003-3654-1602]; Molaverdikhani, K. [0000-0002-0502-0428]; Montes, D. [0000-0002-7779-238X]; Montet, B. T. [0000-0001-7516-8308]; Murgas, F. [0000-0001-9087-1245]; Narita, N. [0000-0001-8511-2981]; Oshagh, M. [0000-0002-0715-8789]; Passegger, V. M. [0000-0002-8569-7243]; Pollacco, D. [0000-0001-9850-9697]; Quinn, S. N. [0000-0002-8964-8377]; Rodríguez López, C. [0000-0001-5559-7850]; Sanz Forcada, J. [0000-0002-1600-7835]; Schwarz, R. P. [0000-0001-8227-1020]; Schweitzer, A. [0000-0002-1624-0389]; Seager, S. [0000-0002-6892-6948]; Stangret, M. [0000-0002-1812-8024]; Stürmer, J. [0000-0002-4410-4712]; Tan, T. G. [0000-0001-5603-6895]; Tenenbaum, P. [0000-0002-1949-4720]; Twicken, J. D. [0000-0002-6778-7552]; Vanderspek, R. [0000-0001-6763-6562]; Winn, J. N. [0000-0002-4265-047X]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Spectroscopy of transiting exoplanets can be used to investigate their atmospheric properties and habitability. Combining radial velocity (RV) and transit data provides additional information on exoplanet physical properties. We detect a transiting rocky planet with an orbital period of 1.467 days around the nearby red dwarf star Gliese 486. The planet Gliese 486 b is 2.81 Earth masses and 1.31 Earth radii, with uncertainties of 5%, as determined from RV data and photometric light curves. The host star is at a distance of ~8.1 parsecs, has a J-band magnitude of ~7.2, and is observable from both hemispheres of Earth. On the basis of these properties and the planet’s short orbital period and high equilibrium temperature, we show that this terrestrial planet is suitable for emission and transit spectroscopy.Publicación Acceso Abierto A super-Earth on a close-in orbit around the M1V star GJ 740 A HADES and CARMENES collaboration(EDP Sciences, 2021-04-07) Toledo Padrón, B.; Suárez Mascareño, A.; Rebolo, R.; Pinamonti, M.; Perger, M.; Scandariato, G.; Damasso, M.; Sozzetti, A.; Moldonado, J.; Desidera, S.; Ribas, I.; Micela, G.; Affer, L.; González Álvarez, E.; Leto, G.; Pagano, I.; Zanmar Sánchez, R.; Giacobbe, P.; Herrero, E.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Zechmeister, M.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Generalitat de CatalunyaContext. M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast, which favors the detection of low-mass planets. The abundance of super-Earth and Earth-like planets detected around this type of star motivates further such research on hosts without reported planetary companions. Aims. The HADES and CARMENES programs are aimed at carrying out extensive searches of exoplanetary systems around M-type stars in the northern hemisphere, allowing us to address, in a statistical sense, the properties of the planets orbiting these objects. In this work, we perform a spectroscopic and photometric study of one of the program stars (GJ 740), which exhibits a short-period RV signal that is compatible with a planetary companion. Methods. We carried out a spectroscopic analysis based on 129 HARPS-N spectra taken over a time span of 6 yr combined with 57 HARPS spectra taken over 4 yr, as well as 32 CARMENES spectra taken during more than 1 yr, resulting in a dataset with a time coverage of 10 yr. We also relied on 459 measurements from the public ASAS survey with a time-coverage of 8 yr, along with 5 yr of photometric magnitudes from the EXORAP project taken in the V, B, R, and I filters to carry out a photometric study. Both analyses were made using Markov chain Monte Carlo simulations and Gaussian process regression to model the activity of the star. Results. We present the discovery of a short-period super-Earth with an orbital period of 2.37756−0.00011+0.00013 d and a minimum mass of 2.96−0.48+0.50 M⊕. We offer an update to the previously reported characterization of the magnetic cycle and rotation period of the star, obtaining values of Prot = 35.563 ± 0.071 d and Pcycle = 2800 ± 150 d. Furthermore, the RV time series exhibits a possibly periodic long-term signal, which might be related to a Saturn-mass planet of ~100 M⊕.Publicación Acceso Abierto CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions(EDP Sciences, 2020-10-12) Cifuentes, C.; Caballero, J. A.; Cortés Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz Forcada, J.; Schweitzer, A.; Seifert, W.; Solano, Enrique; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); 0000-0003-1715-5087; 0000-0002-7349-1387; 0000-0003-3734-9866; 0000-0002-7779-238X; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The relevance of M dwarfs in the search for potentially habitable Earth-sized planets has grown significantly in the last years. Aims. In our on-going effort to comprehensively and accurately characterise confirmed and potential planet-hosting M dwarfs, in particular for the CARMENES survey, we have carried out a comprehensive multi-band photometric analysis involving spectral energy distributions, luminosities, absolute magnitudes, colours, and spectral types, from which we have derived basic astrophysical parameters. Methods. We have carefully compiled photometry in 20 passbands from the ultraviolet to the mid-infrared, and combined it with the latest parallactic distances and close-multiplicity information, mostly from Gaia DR2, of a sample of 2479 K5 V to L8 stars and ultracool dwarfs, including 2210 nearby, bright M dwarfs. For this, we made extensive use of Virtual Observatory tools. Results. We have homogeneously computed accurate bolometric luminosities and effective temperatures of 1843 single stars, derived their radii and masses, studied the impact of metallicity, and compared our results with the literature. The over 40 000 individually inspected magnitudes, together with the basic data and derived parameters of the stars, individual and averaged by spectral type, have been made public to the astronomical community. In addition, we have reported 40 new close multiple systems and candidates (ρ < 3.3 arcsec) and 36 overluminous stars that are assigned to young Galactic populations. Conclusions. In the new era of exoplanet searches around M dwarfs via transit (e.g. TESS, PLATO) and radial velocity (e.g. CARMENES, NIRPS+HARPS), this work is of fundamental importance for stellar and therefore planetary parameter determination. © ESO 2020.Publicación Acceso Abierto Detection and characterization of an ultra-dense sub-Neptunian planet orbiting the Sun-like star K2-292★(EDP Sciences, 2019-03-14) Luque, R.; Nowak, G.; Pallé, E.; Dai, F.; Kaminski, A.; Nagel, E.; Hidalgo, D.; Bauer, F. F.; Lafarga, M.; Livingston, J.; Barragán, O.; Hirano, T.; Fridlund, M.; Gandolfi, D.; Justesen, A. B.; Hjorth, M.; Van Eylen, V.; Winn, J. N.; Esposito, M.; Morales, J. C.; Albrecht, S.; Alonso, R.; Amado, P. J.; Beck, P.; Caballero, J. A.; Cabrera, J.; Cochran, W. D.; Csizmadia, Sz.; Deeg, H.; Eigmuller, Ph.; Endl, M.; Erikson, A.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Knudstrup, E.; Korth, J.; Lam, K. W. F.; Lund, M. N.; Mathur, S.; Montañés Rodríguez, P.; Narita, N.; Nespral, D.; Niraula, P.; Pätzold, M.; Persson, C. M.; Prieto Arranz, J.; Quirrenbach, A.; Rauer, H.; Redfield, S.; Reiners, A.; Ribas, I.; Smith, A. M. S.; European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Japan Society for the Promotion of Science (JSPS); Danish National Research Foundation (DNRF); Deutsche Forschungsgemeinschaft (DFG); Swedish National Space Agency (SNSA); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We present the discovery and characterization of a new transiting planet from Campaign 17 of the Kepler extended mission K2. The planet K2-292 b is a warm sub-Neptune on a 17 day orbit around a bright (V = 9.9 mag) solar-like G3 V star with a mass and radius of M⋆ = 1.00 ± 0.03 M⊙ and R⋆ = 1.09 ± 0.03 R⊙, respectively. We modeled simultaneously the K2 photometry and CARMENES spectroscopic data and derived a radius of Rp=2.63−0.10+0.12 R⊕ and mass of Mp=24.5−4.4+4.4 M⊕, yielding a mean density of ρp=7.4−1.5+1.6 g cm−3, which makes it one of the densest sub-Neptunian planets known to date. We also detected a linear trend in the radial velocities of K2-292 (γ˙RV = −0.40−0.07+0.07 m s−1 d−1) that suggests a long-period companion with a minimum mass on the order of 33 M⊕. If confirmed, it would support a formation scenario of K2-292 b by migration caused by Kozai-Lidov oscillations.Publicación Acceso Abierto Detection and Doppler monitoring of K2-285 (EPIC 246471491), a system of four transiting planets smaller than Neptune(EDP Sciences, 2019-03-04) Pallé, E.; Nowak, G.; Luque, R.; Hidalgo, D.; Barragán, O.; Prieto Arranz, J.; Hirano, T.; Fridlund, M.; Gandolfi, D.; Livingston, J.; Dai, F.; Morales, J. C.; Lafarga, M.; Albrecht, S.; Alonso, R.; Amado, P. J.; Caballero, J. A.; Cabrera, J.; Cochran, W. D.; Csizmadia, Sz.; Deeg, H.; Eigmuller, Ph.; Endl, M.; Erikson, A.; Fukui, A.; Guenther, E. W.; Grziwa, S.; Hatzes, A. P.; Korth, J.; Kürster, M.; Kuzuhara, M.; Montañés Rodríguez, P.; Murgas Alcaino, F.; Narita, N.; Nespral, D.; Pätzold, M.; Persson, C. M.; Quirrenbach, A.; Rauer, H.; Redfield, S.; Reiners, A.; Ribas, I.; Smith, A. M. S.; Van Eylen, V.; Winn, J. N.; Zechmeister, M.; Agencia Estatal de Investigación (AEI); Japan Society for the Promotion of Science (JSPS); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The Kepler extended mission, also known as K2, has provided the community with a wealth of planetary candidates that orbit stars typically much brighter than the targets of the original mission. These planet candidates are suitable for further spectroscopic follow-up and precise mass determinations, leading ultimately to the construction of empirical mass-radius diagrams. Particularly interesting is to constrain the properties of planets that are between Earth and Neptune in size, the most abundant type of planet orbiting Sun-like stars with periods of less than a few years. Aims. Among many other K2 candidates, we discovered a multi-planetary system around EPIC 246471491, referred to henceforth as K2-285, which contains four planets, ranging in size from twice the size of Earth to nearly the size of Neptune. We aim here at confirming their planetary nature and characterizing the properties of this system. Methods. We measure the mass of the planets of the K2-285 system by means of precise radial-velocity measurements using the CARMENES spectrograph and the HARPS-N spectrograph. Results. With our data we are able to determine the mass of the two inner planets of the system with a precision better than 15%, and place upper limits on the masses of the two outer planets. Conclusions. We find that K2-285b has a mass of Mb = 9.68−1.37+1.21 M⊕ and a radius of Rb = 2.59−0.06+0.06 R⊕, yielding a mean density of ρb = 3.07−0.45+0.45 g cm−3, while K2-285c has a mass of Mc = 15.68−2.13+2.28 M⊕, radius of Rc = 3.53−0.08+0.08 R⊕, and a mean density of ρc = 1.95−0.28+0.32 g cm−3. For K2-285d (Rd = 2.48−0.06+0.06 R⊕) and K2-285e (Re = 1.95−0.05+0.05 R⊕), the upper limits for the masses are 6.5 M⊕ and 10.7 M⊕, respectively. The system is thus composed of an (almost) Neptune-twin planet (in mass and radius), two sub-Neptunes with very different densities and presumably bulk composition, and a fourth planet in the outermost orbit that resides right in the middle of the super-Earth/sub-Neptune radius gap. Future comparative planetology studies of this system would provide useful insights into planetary formation, and also a good test of atmospheric escape and evolution theories.Publicación Acceso Abierto Detection of the hydrogen Balmer lines in the ultra-hot Jupiter WASP-33b(EDP Sciences, 2021-01-15) Yan, F.; Wyttenbach, A.; Casasayas Barris, N.; Reiners, A.; Pallé, E.; Henning, T.; Molière, P.; Czesla, S.; Nortmann, L.; Molaverdikhani, K.; Chen, G.; Snellen, I. A. G.; Zechmeister, M.; Huang, C. X.; Ribas, I.; Quirrenbach, A.; Caballero, J. A.; Amado, P. J.; Cont, D.; Khalafinejad, S.; Khaimova, J.; López Puertas, M.; Montes, D.; Nagel, E.; Oshagh, M.; Pedraz, S.; Stangret, M.; Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; Ministerio de Economía y Competitividad (MINECO); Max-Planck-Gesellschaft (MPG); European Research Council (ERC); Swiss National Science Foundation (SNSF); Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Ultra-hot Jupiters (UHJs) are highly irradiated giant exoplanets with extremely high day-side temperatures, which lead to thermal dissociation of most molecular species. It is expected that the neutral hydrogen atom is one of the main species in the upper atmospheres of UHJs. Neutral hydrogen has been detected in several UHJs by observing their Balmer line absorption. In this work, we report four transit observations of the UHJ WASP-33b, performed with the CARMENES and HARPS-North spectrographs, and the detection of the Hα, Hβ, and Hγ lines in the planetary transmission spectrum. The combined Hα transmission spectrum of the four transits has an absorption depth of 0.99 ± 0.05%, which corresponds to an effective radius of 1.31 ± 0.01 Rp. The strong Hα absorption indicates that the line probes the high-altitude thermosphere. We further fitted the three Balmer lines using the PAWN model, assuming that the atmosphere is hydrodynamic and in local thermodynamic equilibrium. We retrieved a thermosphere temperature 12 200−1000+1300 K and a mass-loss rate Ṁ = 1011.8−0.5+0.6 g s−1. The retrieved high mass-loss rate is compatible with the “Balmer-driven” atmospheric escape scenario, in which the stellar Balmer continua radiation in the near-ultraviolet is substantially absorbed by excited hydrogen atoms in the planetary thermosphere.Publicación Acceso Abierto Gliese 49: activity evolution and detection of a super-Earth A HADES and CARMENES collaboration(EDP Sciences, 2019-04-24) Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.; Affer, L.; Azzaro, M.; Amado, P. J.; Anglada Escudé, G.; Baroch, D.; Barrado, D.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Cortés Contreras, M.; Damasso, M.; Dreizler, S.; González Cuesta, L.; Guenther, E. W.; Henning, T.; Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Leto, G.; López González, M. J.; Maldonado, J.; Micela, G.; Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.; Rodríguez, E.; Rodríguez López, C.; Schimitt, J. H. M. M.; Sozzetti, A.; Suárez Mascareño, A.; Toledo Padrón, B.; Zanmar Sánchez, R.; Zapatero Osorio, M. R.; Zechmeister, M.; González Hernández, Carmen; Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Agencia Estatal de Investigación (AEI); 0000-0001-7098-0372; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Small planets around low-mass stars often show orbital periods in a range that corresponds to the temperate zones of their host stars which are therefore of prime interest for planet searches. Surface phenomena such as spots and faculae create periodic signals in radial velocities and in observational activity tracers in the same range, so they can mimic or hide true planetary signals. Aims. We aim to detect Doppler signals corresponding to planetary companions, determine their most probable orbital configurations, and understand the stellar activity and its impact on different datasets. Methods. We analyzed 22 yr of data of the M1.5 V-type star Gl 49 (BD+61 195) including HARPS-N and CARMENES spectrographs, complemented by APT2 and SNO photometry. Activity indices are calculated from the observed spectra, and all datasets are analyzed with periodograms and noise models. We investigated how the variation of stellar activity imprints on our datasets. We further tested the origin of the signals and investigate phase shifts between the different sets. To search for the best-fit model we maximize the likelihood function in a Markov chain Monte Carlo approach. Results. As a result of this study, we are able to detect the super-Earth Gl 49b with a minimum mass of 5.6 M⊕. It orbits its host star with a period of 13.85 d at a semi-major axis of 0.090 au and we calculate an equilibrium temperature of 350 K and a transit probability of 2.0%. The contribution from the spot-dominated host star to the different datasets is complex, and includes signals from the stellar rotation at 18.86 d, evolutionary timescales of activity phenomena at 40–80 d, and a long-term variation of at least four years.Publicación Acceso Abierto Magnetic fields in M dwarfs from the CARMENES survey(EDP Sciences, 2019-06-18) Shulyak, D.; Reiners, A.; Nagel, E.; Tal Or, L.; Caballero, J. A.; Zechmeister, M.; Béjar, V. J. S.; Cortés Contreras, M.; Martín, E. L.; Kaminski, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Anglada Escudé, G.; Bauer, F. F.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Pedraz, S.; Israel Science Foundation (ISF); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. M dwarfs are known to generate the strongest magnetic fields among main-sequence stars with convective envelopes, but we are still lacking a consistent picture of the link between the magnetic fields and underlying dynamo mechanisms, rotation, and activity. Aims. In this work we aim to measure magnetic fields from the high-resolution near-infrared spectra taken with the CARMENES radial-velocity planet survey in a sample of 29 active M dwarfs and compare our results against stellar parameters. Methods. We used the state-of-the-art radiative transfer code to measure total magnetic flux densities from the Zeeman broadening of spectral lines and filling factors. Results. We detect strong kG magnetic fields in all our targets. In 16 stars the magnetic fields were measured for the first time. Our measurements are consistent with the magnetic field saturation in stars with rotation periods P < 4 d. The analysis of the magnetic filling factors reveal two different patterns of either very smooth distribution or a more patchy one, which can be connected to the dynamo state of the stars and/or stellar mass. Conclusions. Our measurements extend the list of M dwarfs with strong surface magnetic fields. They also allow us to better constrain the interplay between the magnetic energy, stellar rotation, and underlying dynamo action. The high spectral resolution and observations at near-infrared wavelengths are the beneficial capabilities of the CARMENES instrument that allow us to address important questions about the stellar magnetism.Publicación Acceso Abierto Mass and density of the transiting hot and rocky super-Earth LHS 1478 b (TOI-1640 b)(EDP Sciences, 2021-05-21) Soto, M. G.; Anglada Escudé, G.; Dreizler, S.; Molaverdikhani, K.; Kemmer, J.; Rodríguez López, C.; Lillo Box, J.; Pallé, E.; Espinoza, N.; Caballero, J. A.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Narita, N.; Hirano, T.; Amado, P. J.; Béjar, V. J. S.; Bluhm, P.; Burke, C. J.; Caldwell, D. A.; Charbonneau, D.; Cloutier, R.; Collins, K. A.; Cortés Contreras, M.; Girardin, E.; Guerra, P.; Harakawa, H.; Hatzes, A. P.; Irwin, J.; Jenkins, J. M.; Jensen, E.; Kawauchi, K.; Kotani, T.; Kudo, T.; Kunimoto, M.; Kuzuhara, M.; Latham, D. W.; Montes, D.; Morales, J. C.; Mori, M.; Nelson, R. P.; Omiya, M.; Pedraz, S.; Passegger, V. M.; Rackham, B. V.; Rudat, A.; Schlieder, J. E.; Schöfer, P.; Schweitzer, A.; Selezneva, A.; Stockdale, C.; Tamura, M.; Trifonov, T.; Vanderspek, R.; Watanabe, N.; Deutsche Forschungsgemeinschaft (DFG); Ministerio de Economía y Competitividad (MINECO); Junta de Andalucía; Science and Technology Facilities Council (STFC); National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; Japan Society for the Promotion of Science (JSPS); Soto, M. G. [0000-0001-9743-5649]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737One of the main objectives of the Transiting Exoplanet Survey Satellite (TESS) mission is the discovery of small rocky planets around relatively bright nearby stars. Here, we report the discovery and characterization of the transiting super-Earth planet orbiting LHS 1478 (TOI-1640). The star is an inactive red dwarf (J ~ 9.6 mag and spectral type m3 V) with mass and radius estimates of 0.20 ± 0.01M⊙ and 0.25 ± 0.01R⊙, respectively, and an effective temperature of 3381 ± 54 K. It was observed by TESS in four sectors. These data revealed a transit-like feature with a period of 1.949 days. We combined the TESS data with three ground-based transit measurements, 57 radial velocity (RV) measurements from CARMENES, and 13 RV measurements from IRD, determining that the signal is produced by a planet with a mass of 2.33−0.20+0.20 M⊕ and a radius of 1.24−0.05+0.05 R⊕. The resulting bulk density of this planet is 6.67 g cm−3, which is consistent with a rocky planet with an Fe- and MgSiO3-dominated composition. Although the planet would be too hot to sustain liquid water on its surface (its equilibrium temperature is about ~595 K, suggesting aVenus-like atmosphere), spectroscopic metrics based on the capabilities of the forthcoming James Webb Space Telescope and the fact that the host star is rather inactive indicate that this is one of the most favorable known rocky exoplanets for atmospheric characterization.Publicación Acceso Abierto Precise radial velocities of giant stars XV. Mysterious nearly periodic radial velocity variations in the eccentric binary ε Cygni(EDP Sciences, 2021-03-29) Heeren, P.; Reffert, S.; Trifonov, T.; Wong, K. H.; Hoi Lee, M.; Lillo Box, J.; Quirrenbach, A.; Arentoft, T.; Albrecht, S.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Agencia Estatal de Investigación (AEI); Danish National Research Foundation; Danish Council for Independent Research; Heeren, P. [0000-0002-3662-9930]; Reffert, S. [0000-0002-0460-8289]; Trifonov, T. [0000-0002-0236-775X]; Hoi Lee, M. [0000-0003-1930-5683]; Lillo Box, J. [0000-0003-3742-1987]; Albrecht, S. [0000-0003-1762-8235]; Fredslund Andersen, M. [0000-0002-9194-8520]; Pallé, P. L. [0000-0003-3803-4823]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Using the Hamilton Échelle Spectrograph at Lick Observatory, we have obtained precise radial velocities (RVs) of a sample of 373 G- and K-giant stars over more than 12 yr, leading to the discovery of several single and multiple planetary systems. The RVs of the long-period (~53 yr) spectroscopic binary ε Cyg (HIP 102488) are found to exhibit additional regular variations with a much shorter period (~291 days). Aims. We intend to improve the orbital solution of the ε Cyg system and attempt to identify the cause of the nearly periodic shorter period variations, which might be due to an additional substellar companion. Methods. We used precise RV measurements of the K-giant star ε Cyg from Lick Observatory, in combination with a large set of RVs collected more recently with the SONG telescope, as well as archival data sets. We fit Keplerian and fully dynamical N-body models to the RVs in order to explore the properties of a previously known spectroscopic stellar companion and to investigate whether there is an additional planetary companion in the system. To search for long-term stable regions in the parameter space around the orbit of this putative planet, we ran a stability analysis using an N-body code. Furthermore, we explored the possibility of co-orbital bodies to the planet with a demodulation technique. We tested the hypothesis of ε Cyg being a hierarchical stellar triple by using a modified version of the N-body code. Alternative causes for the observed RV variations, such as stellar spots and oscillations, were examined by analyzing photometric data of the system and by comparing its properties to known variable stars with long secondary periods and heartbeat stars from the literature. Results. Our Keplerian model characterizes the orbit of the spectroscopic binary to higher precision than achieved previously, resulting in a semi-major axis of a = 15.8 AU, an eccentricity of e = 0.93, and a minimum mass of the secondary of msini = 0.265 M⊙. Additional short-period RV variations closely resemble the signal of a Jupiter-mass planet orbiting the evolved primary component with a period of 291 d, but the period and amplitude of the putative orbit change strongly over time. Furthermore, in our stability analysis of the system, no stable orbits could be found in a large region around the best fit. Both of these findings deem a planetary cause of the RV variations unlikely. Most of the investigated alternative scenarios also fail to explain the observed variability convincingly. Due to its very eccentric binary orbit, it seems possible, however, that ε Cyg could be an extreme example of a heartbeat system.Publicación Acceso Abierto Stellar atmospheric parameters of FGK-type stars from high-resolution optical and near-infrared CARMENES spectra(Oxford Academics: Oxford University Press, 2020-01-10) Marfil, E.; Tabernero, H. M.; Montes, D.; Caballero, J. A.; Soto, M. G.; Kaminski, A.; Nagel, E.; Jeffers, S. V.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); 0000-0001-8907-4775; 0000-0002-8087-4298; 0000-0002-7349-1387; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-stable, double channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters (Teti, log g, 4, and [Fell I]) by means of the STEPAR code, a PYTHON implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe 1 and Fe tl line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17 100 A, thus substantially increasing the number of identified Fe! and Felt lines up to 653 and 23, respectively, We examined the impact of the near-infrared Fe and Fen lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 Gala benchmark stars contained in our sample, Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fel and Feu lines when the near-infrared region is taken into account reveals a deeper Teff scale that might stem from a higher sensitivity of the near-infrared lines to Tff.C 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyPublicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs A deep learning approach to determine fundamental parameters of target stars(EDP Sciences, 2020-09-30) Passegger, V. M.; Bello García, A.; Ordieres Meré, J.; Caballero, J. A.; Schweitzer, A.; González Marcos, A.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Cortés Contreras, M.; Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Marfil, E.; Montes, D.; Morales, J. C.; Nagel, E.; Sarro, L. M.; Tabernero, H. M.; Zechmeister, M.; Solano, Enrique; Agencia Estatal de Investigación (AEI); Fundacao para a Ciencia e a Tecnologia (FCT); National Aeronautics and Space Administration (NASA); Bello García, A. [0000-0001-8691-3342]; Ordieres Meré, J. [0000-0002-9677-6764]; Caballero, J. A. [0000-0002-7349-1387]; González Marcos, A. [0000-0003-4684-659X]; Ribas, I. [0000-0002-6689-0312]; Azzaro, M. [0000-0002-1317-0661]; Kürster, M. [0000-0002-1765-9907]; Marfil, E. [0000-0001-8907-4775]; Montes, D. [0000-0002-7779-238X]; Morales, J. C. [0000-0003-0061-518X]; Nagel, E. [0000-0002-4019-3631]; Sarro, L. M. [0000-0002-5622-5191]; Tabernero, H. [0000-0002-8087-4298]; Zechmesister, M. [0000-0002-6532-4378]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs Different roads to radii and masses of the target stars(EDP Sciences, 2019-05-14) Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar, V. J. S.; Cortés Contreras, M.; Caballero, J. A.; Del Burgo, C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Tabernero, H. M.; Zechmeister, M.; Solano, Enrique; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Aims. We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R > 80 000) spectroscopic survey has been used to derive these fundamental stellar parameters. Methods. We derived the radii using Stefan–Boltzmann’s law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Results. Between spectral types M0 V and M7 V our radii cover the range 0.1 R⊙ < R < 0.6 R⊙ with an error of 2–3% and our masses cover 0.09 ℳ⊙ < ℳ< 0.6ℳ⊙ with an error of 3–5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs Photospheric parameters of target stars from high-resolution spectroscopy. II. Simultaneous multiwavelength range modeling of activity insensitive lines(EDP Sciences, 2019-07-17) Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.; Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.; Cortés Contreras, M.; Domínguez Fernández, A. J.; Quirrenbach, A.; Ribas, I.; Azzaro, M.; Anglada Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Deutsche Forschungsgemeinschaft (DFG); Nvidia; 0000-0002-8388-6040; 0000-0003-3734-9866; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We present precise photospheric parameters of 282 M dwarfs determined from fitting the most recent version of PHOENIX models to high-resolution CARMENES spectra in the visible (0.52–0.96 μm) and NIR wavelength range (0.96–1.71 μm). With its aim to search for habitable planets around M dwarfs, several planets of different masses have been detected. The characterization of the target sample is important for the ability to derive and constrain the physical properties of any planetary systems that are detected. As a continuation of previous work in this context, we derived the fundamental stellar parameters effective temperature, surface gravity, and metallicity of the CARMENES M-dwarf targets from PHOENIX model fits using a χ2 method. We calculated updated PHOENIX stellar atmosphere models that include a new equation of state to especially account for spectral features of low-temperature stellar atmospheres as well as new atomic and molecular line lists. We show the importance of selecting magnetically insensitive lines for fitting to avoid effects of stellar activity in the line profiles. For the first time, we directly compare stellar parameters derived from multiwavelength range spectra, simultaneously observed for the same star. In comparison with literature values we show that fundamental parameters derived from visible spectra and visible and NIR spectra combined are in better agreement than those derived from the same spectra in the NIR alone.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs The He I triplet at 10830 Å across the M dwarf sequence(EDP Sciences, 2019-11-25) Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, H. M. M.; Hintz, D.; Johnson, E. N.; Sanz Forcada, J.; Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.; Béjar, V. J. S.; Cortés Contreras, M.; Díez Alonso, E.; Dreizler, S.; Galadí Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Deutsche Forschungsgemeinschaft (DFG); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Ribas, I. [0000-0002-6689-0312]; Montes, D. [0000-0002-7779-238X]; Lafarga, M. [0000-0002-8815-9416]; Amado, P. [0000-0001-8012-3788]; Nagel, E. [0000-0002-4019-3631]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548The He I infrared (IR) triplet at 10 830 Å is an important activity indicator for the Sun and in solar-type stars, however, it has rarely been studied in relation to M dwarfs to date. In this study, we use the time-averaged spectra of 319 single stars with spectral types ranging from M0.0 V to M9.0 V obtained with the CARMENES high resolution optical and near-infrared spectrograph at Calar Alto to study the properties of the He I IR triplet lines. In quiescence, we find the triplet in absorption with a decrease of the measured pseudo equivalent width (pEW) towards later sub-types. For stars later than M5.0 V, the He I triplet becomes undetectable in our study. This dependence on effective temperature may be related to a change in chromospheric conditions along the M dwarf sequence. When an emission in the triplet is observed, we attribute it to flaring. The absence of emission during quiescence is consistent with line formation by photo-ionisation and recombination, while flare emission may be caused by collisions within dense material. The He I triplet tends to increase in depth according to increasing activity levels, ultimately becoming filled in; however, we do not find a correlation between the pEW(He IR) and X-ray properties. This behaviour may be attributed to the absence of very inactive stars (LX∕Lbol < −5.5) in our sample or to the complex behaviour with regard to increasing depth and filling in.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs. Variability of the He I line at 10 830 Å(EDP Sciences, 2020-08-10) Fihrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, H. M. M.; Jeffers, S. V.; Caballero, J. A.; Hintz, D.; Johnson, E. N.; Schöfer, P.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Nortmann, L.; Bauer, F. F.; Béjar, V. J. S.; Cortés Contreras, M.; Dreizler, S.; Galadí Enríquez, D.; Hatzes, A. P.; Kaminski, A.; Kürster, M.; Lafarga, M.; Deutsche Forschungsgemeinschaft (DFG); Bauer, F. F. [0000-0003-1212-5225]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The He I infrared (IR) triplet at 10 830 Å is known as an activity indicator in solar-type stars and has become a primary diagnostic in exoplanetary transmission spectroscopy. He I IR lines are a tracer of the stellar extreme-ultraviolet irradiation from the transition region and corona. We study the variability of the He I triplet lines in a spectral time series of 319 M dwarf stars that was obtained with the CARMENES high-resolution optical and near-infrared spectrograph at Calar Alto. We detect He I IR line variability in 18% of our sample stars, all of which show Hα in emission. Therefore, we find detectable He I variability in 78% of the sub-sample of stars with Hα emission. Detectable variability is strongly concentrated in the latest spectral sub-types, where the He I lines during quiescence are typically weak. The fraction of stars with detectable He I variation remains lower than 10% for stars earlier than M3.0 V, while it exceeds 30% for the later spectral sub-types. Flares are accompanied by particularly pronounced line variations, including strongly broadened lines with red and blue asymmetries. However, we also find evidence for enhanced He I absorption, which is potentially associated with increased high-energy irradiation levels at flare onset. Generally, He I and Hα line variations tend to be correlated, with Hα being the most sensitive indicator in terms of pseudo-equivalent width variation. This makes the He I triplet a favourable target for planetary transmission spectroscopy. © 2020 ESO.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs: Dynamical characterization of the multiple planet system GJ 1148 and prospects of habitable exomoons around GJ 1148 b(EDP Sciences, 2020-06-03) Trifonov, T.; Lee, M. H.; Kürster, M.; Henning, T.; Grishin, E.; Stock, S.; Tjoa, J.; Caballero, J. A.; Wong, K. H.; Bauer, F. F.; Quirrenbach, A.; Zechmeister, M.; Ribas, I.; Reffert, S.; Reiners, A.; Amado, P. J.; Kossakowski, D.; Azzaro, M.; Béjar, V. J. S.; Cortés Contreras, M.; Dreizler, S.; Hatzes, A. P.; Jeffers, S. V.; Kaminski, A.; Lafarga, M.; Montes, D.; Morales, J. C.; Pavlov, A.; Rodríguez López, C.; Schmitt, H. M. M.; Barnes, R.; Solano, Enrique; Deutsche Forschungsgemeinschaft (DFG); Ministerio de Economía y Competitividad (MINECO); Junta de Andalucía; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Trifonov, T. https://orcid.org/0000-0002-0236-775X; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709Context. GJ 1148 is an M-dwarf star hosting a planetary system composed of two Saturn-mass planets in eccentric orbits with periods of 41.38 and 532.02 days. Aims. We reanalyze the orbital configuration and dynamics of the GJ 1148 multi-planetary system based on new precise radial velocity measurements taken with CARMENES. Methods. We combined new and archival precise Doppler measurements from CARMENES with those available from HIRES for GJ 1148 and modeled these data with a self-consistent dynamical model. We studied the orbital dynamics of the system using the secular theory and direct N-body integrations. The prospects of potentially habitable moons around GJ 1148 b were examined. Results. The refined dynamical analyses show that the GJ 1148 system is long-term stable in a large phase-space of orbital parameters with an orbital configuration suggesting apsidal alignment, but not in any particular high-order mean-motion resonant commensurability. GJ 1148 b orbits inside the optimistic habitable zone (HZ). We find only a narrow stability region around the planet where exomoons can exist. However, in this stable region exomoons exhibit quick orbital decay due to tidal interaction with the planet. Conclusions. The GJ 1148 planetary system is a very rare M-dwarf planetary system consisting of a pair of gas giants, the inner of which resides in the HZ. We conclude that habitable exomoons around GJ 1148 b are very unlikely to exist. © 2020 T. Trifonov et al.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs: LP 714-47 b (TOI 442.01): populating the Neptune desert(EDP Sciences, 2020-12-11) Dreizler, S.; Crossfield, J. M.; Kossakowski, D.; Plavchan, P.; Jeffers, S. V.; Kemmer, J.; Luque, R.; Espinoza, N.; Pallé, E.; Stassun, K.; Matthews, E.; Gorjian, V.; Kawauchi, K.; Kielkopf, J. F.; Hidalgo, D.; Kosiarek, M. R.; Kreidberg, L.; Huber, D.; Livingston, J.; Jehin, E.; Jensen, E. L. N.; Mann, A.; Madrigal Aguado, A.; Kane, S. R.; Mocnik, T.; Morales, J. C.; Klahr, H.; Murgas Alcaino, F.; Kürster, M.; Lafarga, M.; Nowak, G.; Louie, D.; Parviainen, H.; Passegger, V. M.; Matson, R. A.; Pozuelos, F. J.; Quirrenbach, A.; Muirhead, P. S.; Robertson, P.; Nandakumar, S.; Narita, N.; Rose, M. E.; Roy, A.; Oshagh, M.; Schlieder, J.; Shectman, S.; Pollacco, D.; Senavci, H. V.; Reefe, M.; Ribas, I.; Villaseñor, J. N.; Rodríguez López, C.; Weiss, L. M.; Wittrock, J.; Schweitzer, A.; Zohrabi, F.; Cale, B.; Tanner, A.; Lillo Box, J.; Teske, J.; Twicken, J. D.; Lalitha, S.; Reiners, A.; Wang, S. X.; Bitsch, B.; Zapatero Osorio, M. R.; Yilmaz, M.; Ricker, G.; Caballero, J. A.; Schlecker, M.; Seager, S.; Zechmeister, M.; Jenkins, J. M.; Aceituno, J.; Soubkiou, A.; Barkaoui, K.; Chaturvedi, P.; Hatzes, A. P.; Bauer, F. F.; Vanderspek, R.; Latham, D. W.; Benkhaldoun, Z.; Beichman, C.; Winn, J. N.; Butler, R. P.; Caldwell, D. A.; Amado, P. J.; Christianesen, J. L.; Barbieri, M.; Batalha, N. M.; Collins, K. A.; Benneke, B.; Combs, D.; Cortés Contreras, M.; Burt, J.; Daylan, T.; Chintada, A.; Chontos, A.; Evans, P.; Ciardi, D. R.; Cifuentes, C.; Flowers, E. E.; Fukui, A.; Collins, K. I.; Furlan, E.; Gaidos, E.; Crane, J. D.; Gillon, M.; Dragomir, D.; Esparza Borges, E.; Hellier, C.; Feng, F.; Howard, A. W.; Howell, Steve B.; Fulton, B.; Isaacson, I.; Geneser, C.; Giacalone, S.; Kaminski, A.; Gonzales, E.; Junta de Andalucia; National Aeronautics and Space Administration (NASA); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Generalitat de Catalunya; Science and Technology Facilities Council (STFC); Centre National de la Recherche Scientifique (CNRS); Japan Society for the Promotion of Science (KAKENHI); 0000-0001-6187-5941; 0000-0002-8864-1667; 0000-0003-3929-1442; 0000-0003-0987-1593; 0000-0002-7349-1387; 0000-0003-3742-1987; 0000-0002-8388-6040; 0000-0003-1715-5087; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m(b) = 30.8 +/- 1.5M(circle plus), R-b = 4.7 +/- 0.3 R-circle plus) located in the "hot Neptune desert". Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer, and ground-based photometry from MuSCAT2, TRAPPIST-South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TuBTAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf (T-eff = 3950 +/- 51 K) with a mass of 0.59 +/- 0.02M(circle dot) and a radius of 0.58 +/- 0.02R(circle dot). From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33 d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained.Publicación Acceso Abierto The CARMENES search for exoplanets around M dwarfs: Measuring precise radial velocities in the near infrared: The example of the super-Earth CD Cet b(EDP Sciences, 2020-08-10) Bauer, F. F.; Zechmeister, M.; Kaminski, A.; Rodríguez López, C.; Caballero, J. A.; Azzaro, M.; Stahl, S.; Kossakowski, D.; Quirrenbach, A.; Becerril Jarque, S.; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, A.; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, H. M. M.; Schweitzer, A.; Solano, Enrique; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Deutsche Forschungsgemeinschaft (DFG); 0000-0003-1212-5225; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548The high-resolution, dual channel, visible and near-infrared spectrograph CARMENES offers exciting opportunities for stellar and exoplanetary research on M dwarfs. In this work we address the challenge of reaching the highest radial velocity precision possible with a complex, actively cooled, cryogenic instrument, such as the near-infrared channel. We describe the performance of the instrument and the work flow used to derive precise Doppler measurements from the spectra. The capability of both CARMENES channels to detect small exoplanets is demonstrated with the example of the nearby M5.0 V star CD Cet (GJ 1057), around which we announce a super-Earth (4.0 ± 0.4 M· ) companion on a 2.29 d orbit. © 2020 ESO.