Examinando por Autor "Pineda, J. E."
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Publicación Restringido ALMA–IRDC: dense gas mass distribution from cloud to core scales(Oxford Academics: Oxford University Press, 2021-03-22) Barnes, A. T.; Henshaw, J. D.; Fontani, F.; Pineda, J. E.; Cosentino, G.; Tan, J. C.; Caselli, P.; Jiménez Serra, I.; Law, C. Y.; Avison, A.; Bigiel, F.; Feng, S.; Kong, S.; Longmore, S. N.; Moser, L.; Parker, R. J.; Sánchez Monge, Á.; Wang, K.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Deutsche Forschungsgemeinschaft (DFG); East Asia Core Observatories Association (EACOA); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; Peking University; Avison, A. [0000-0002-2562-8609]Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high mass star formation (HMSF). Here, we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with Atacama Large Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These observations have a high angular resolution (∼3 arcsec; ∼0.05 pc), and high continuum and spectral line sensitivity (∼0.15 mJy beam−1 and ∼0.2 K per 0.1 km s−1 channel at the N2H+ (1 − 0) transition). From the dust continuum emission, we identify 96 cores ranging from low to high mass (M = 3.4−50.9 M⊙) that are gravitationally bound (αvir = 0.3−1.3) and which would require magnetic field strengths of B = 0.3−1.0 mG to be in virial equilibrium. We combine these results with a homogenized catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01–10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (<0.02 pc) within this hierarchy do not currently have the mass and/or the density required to form high-mass stars. None the less, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain >16 M⊙ without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of HMSF represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories.Publicación Acceso Abierto FAUST. II. Discovery of a Secondary Outflow in IRAS 15398−3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?(The Institute of Physics (IOP), 2021-03-22) Okoda, Y.; Oya, Y.; Francis, L.; Johnstone, D.; Inutsuka, S. I.; Ceccarelli, C.; Codella, C.; Chandler, C. J.; Sakai, N.; Aikawa, Y.; Alves, F.; Balucani, N.; Bianchi, E.; Bouvier, M.; Caselli, P.; Caux, E.; Charnley, S.; Choudhury, S.; De Simone, M.; Dulieu, F.; Durán, A.; Evans, L.; Favre, C.; Fedele, D.; Feng, S.; Fontani, F.; Hama, T.; Hanawa, T.; Herbst, E.; Hirota, T.; Imai, M.; Isella, A.; Jiménez Serra, I.; Kahane, C.; Lefloch, B.; Loinard, L.; López Sepulcre, A.; Maud, L. T.; Maureira, M. J.; Ménard, F.; Mercimek, S.; Miotello, A.; Moellenbrock, G.; Mori, S.; Murillo, Nadia M.; Nakatani, R.; Nomura, H.; Oba, Y.; O´Donoghue, R.; Ohashi, S.; Ospina Zamudio, J.; Pineda, J. E.; Podio, L.; Rimola, A.; Sakai, T.; Segura Cox, D.; Shirley, Y.; Svoboda, B.; Taquet, V.; Testi, L.; Vastel, C.; Viti, S.; Watanabe, N.; Watanabe, Y.; Witzel, A.; Xue, C.; Zhang, Y.; Zhao, B.; Yamamoto, S.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Japan Society for the Promotion of Science (JSPS); Okoda, Y. [0000-0003-3655-5270]; Oya, Y. [0000-0002-0197-8751]; Francis, L. [0000-0001-8822-6327]; Johnstone, D. [0000-0002-6773-459X]; Inutsuka, S. I. [0000-0003-4366-6518]; Ceccarelli, C. [0000-0001-9664-6292]; Codella, C. [0000-0003-1514-3074]; Chandler, C. [0000-0002-7570-5596]; Sakai, N. [0000-0002-3297-4497]; Aikawa, Y. [0000-0003-3283-6884]; Alves, F. [0000-0002-7945-064X]; Balucani, N. [0000-0001-5121-5683]; Bianchi, E. [0000-0001-9249-7082]; Bouvier, M. [0000-0003-0167-0746]; Caselli, P. [0000-0003-1481-7911]; De Simone, M. [0000-0001-5659-0140]; Feng, S. [0000-0002-4707-8409]; Fontani, F. [0000-0003-0348-3418]; Hama, T. [0000-0002-4991-4044]; Hanawa, T. [0000-0002-7538-581X]; Herbst, E. [0000-0002-4649-2536]; Hirota, T. [0000-0003-1659-095X]; Imai, M. [0000-0002-5342-6262]; Isella, A. [0000-0001-8061-2207]; Jiménez Serra, I. [0000-0003-4493-8714]; Kahane, C. [0000-0003-1691-4686]; Loinard, L. [0000-0002-5635-3345]; López Sepulcre, A. [0000-0002-6729-3640]; Maud, L. T. [0000-0002-7675-3565]; Maureira, M. J. [0000-0002-7026-8163]; Menard, F. [0000-0002-1637-7393]; Miotello, A. [0000-0002-7997-2528]; Moellenbrock, G. [0000-0002-3296-8134]; Oba, Y. [0000-0002-6852-3604]; Ohashi, S. [0000-0002-9661-7958]; Pineda, J. E. [0000-0002-3972-1978]; Rimola, A. [0000-0002-9637-4554]; Sakai, T. [0000-0003-4521-7492]; Segura Cox, D. [0000-0003-3172-6763]; Svoboda, B. [0000-0002-8502-6431]; Taquet, V. [0000-0003-0407-7489]We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H2CO, SO, and C18O line emission, which extends from the source in a direction almost perpendicular to the known active outflow. Molecular line emission from H2CO, SO, SiO, and CH3OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398−3359, by 1200 au. The arc-like structure is blueshifted with respect to the systemic velocity. A velocity gradient of 1.2 km s−1 over 1200 au along the linear feature seen in the H2CO emission connects the protostar and the arc-like structure kinematically. SO, SiO, and CH3OH are known to trace shocks, and we interpret the arc-like structure as a relic shock region produced by an outflow previously launched by IRAS 15398−3359. The velocity gradient along the linear structure can be explained as relic outflow motion. The origins of the newly observed arc-like structure and extended linear feature are discussed in relation to turbulent motions within the protostellar core and episodic accretion events during the earliest stage of protostellar evolution.Publicación Acceso Abierto Gas phase Elemental abundances in Molecular cloudS (GEMS) III. Unlocking the CS chemistry: the CS+O reaction(EDP Sciences, 2021-02-02) Bulut, N.; Roncero, O.; Aguado, A.; Loison, J. C.; Navarro Almaida, D.; Wakelam, V.; Fuente, A.; Roueff, E.; Le Gal, R.; Caselli, P.; Gerin, M.; Hickson, K. M.; Spezzano, S.; Riviére Marichalar, P.; Alonso Albi, T.; Bachiller, R.; Jiménez Serra, I.; Kramer, C.; Tercero, B.; Rodríguez Baras, M.; García Burillo, S.; Goicoechea, J. R.; Treviño Morales, S. P.; Esplugues, G.; Cazaux, S.; Commercon, B.; Laas, J. C.; Kirk, J.; Lattanzi, V.; Martín Doménech, R.; Muñoz Caro, G. M.; Pineda, J. E.; Ward Thompson, D.; Tafalla, M.; Marcelino, N.; Malinen, J.; Friesen, R.; Giuliano, B. M.; Agúndez, Marcelino; Hacar, A.; Agencia Estatal de Investigación (AEI); Marcelino, N. [0000-0001-7236-4047]; Roncero, O. [0000-0002-8871-4846]; Pineda, J. [0000-0002-3972-1978]; Agundez, M. [0000-0003-3248-3564]; Tafalla, M. [0000-0002-2569-1253]Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150−400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150−400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150–400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10−15 cm3 s−1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.Publicación Acceso Abierto Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC 1333-IRAS4A(EDP Sciences, 2020-05-15) Taquet, V.; Codella, C.; De Simone, M.; López Sepulcre, A.; Pineda, J. E.; Segura Cox, D.; Ceccarelli, C.; Caselli, P.; Gusdorf, A.; Persson, M. V.; Alves, F.; Caux, E.; Favre, C.; Fontani, F.; Neri, R.; Oya, Y.; Sakai, N.; Vastel, C.; Yamamoto, S.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Chacón Tanarro, A.; Dulieu, F.; Enrique Romero, J.; Feng, S.; Holdship, J.; Lefloch, B.; Al Edhari, A. J.; Jiménez Serra, I.; Kahane, C.; Lattanzi, V.; Ospina Zamudio, J.; Podio, L.; Punanova, A.; Rimola, A.; Sims, I. R.; Spezzano, S.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Vazart, F.; Viti, S.; Witzel, A.; Agence Nationale de la Recherche (ANR); European Research Council (ERC); Ceccarelli, C. [0000-0001-9664-6292]; Balucani, N. [0000-0001-5121-5683]; Rimola, A. [0000-0002-9637-4554]; Al Edhari, A. J. [0000-0003-4089-841X]; De Oliveira Alves, F. [0000-0002-7945-064X]; Lefloch, B. [0000-0002-9397-3826]; Persson, M. V. [0000-0002-1100-5734]; Bachiller, R. [0000-0002-5331-5386]; Pineda, J. [0000-0002-3972-1978]; Segura Cox, D. [0000-0003-3172-6763]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC 1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC 1333-IRAS4A in the 1.3, 2, and 3 mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east–south west direction. SO is detected at extremely high radial velocity up to + 25 km s−1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm−3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.