Examinando por Autor "Pepe, F."
Mostrando 1 - 12 de 12
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A precise architecture characterization of the π Mensae planetary system(EDP Sciences, 2020-10-01) Damasso, D.; Sozzetti, A; Lovis, C.; Barros, S. C. C.; Sousa, S. G.; Demangeon, O. D. S.; Faria, J. P.; Lillo Box, J.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Zapatero Osorio, M. R.; Amate, M.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Borsa, F.; Bossini, D.; Bourrier, V.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Dekker, H.; Delabre, B.; Di Marcoantonio, P.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lo Curto, G.; Maire, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Riva, M.; Santa Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Agenzia Spaziale Italiana (ASI); Fundação para a Ciência e a Tecnologia (FCT); Australian Research Council (ARC); Istituto Nazionale Astrofisica (INAF); 0000-0003-0987-1593; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The bright star pi Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M-circle plus planet at similar to 0.07 au and a sub-stellar companion on a similar to 2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of pi Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around pi Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s(-1)) allow for a precise retrieval of the Doppler signal induced by pi Men c. The residuals show a root mean square of 1.2 m s(-1), which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than similar to 2 M-circle plus within the orbit of pi Men c). We improve the ephemeris of pi Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of pi Men b with high precision (i(b) =45.8(-1.1)(+1.4) deg). This leads to precise measurement of its absolute mass m(b) = =14.1(-0.4)(+0.5) M-Jup, indicating that pi Men b can be classified as a brown dwarf. Conclusions. The pi Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the pi Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of pi Men b contributes to make the brown dwarf desert a bit greener.Publicación Acceso Abierto A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130)(EDP Sciences, 2021-04-14) Sozzetti, A.; Damasso, M.; Bonomo, A. S.; Alibert, Y.; Sousa, S. G.; Adibekyan, V.; Zapatero Osorio, M. R.; Barros, S. C. C.; Lillo Box, J.; Stassun, K. G.; Winn, J. N.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Allart, R.; Barclay, T.; Bouchy, F.; Cabral, A.; Ciardi, D.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Fausnaugh, M.; Figueira, P.; Haldemann, J.; Jenkins, J. M.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Oshagh, M.; Otegi, J.; Pallé, E.; Poretti, E.; Ricker, G.; Seager, S.; Suárez Mascareño, A.; Twicken, J. D.; Udry, S.; González Hernández, Carmen; Rodríguez Gutiérrez, David; Istituto Nazionale di Astrofisica (INAF); Agenzia Spaziale Italiana (ASI); iss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Commission (EC); European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI) http://dx.doi.org/10.13039/501100011033; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Haldemann, J. [0000-0003-1231-2389]Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by the TESS mission orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period of Pb = 14.3 days. Methods. We used 43 ESPRESSO high-resolution spectra and broad-band photometry information to derive accurate stellar atmospheric and physical parameters of HD 5278. We exploited the TESS light curve and spectroscopic diagnostics to gauge the impact of stellar activity on the ESPRESSO RVs. We performed separate as well as joint analyses of the TESS photometry and the ESPRESSO RVs using fully Bayesian frameworks to determine the system parameters. Results. Based on the ESPRESSO spectra, the updated stellar parameters of HD 5278 are Teff = 6203 ± 64 K, log g = 4.50 ± 0.11 dex, [Fe/H] = −0.12 ± 0.04 dex, M⋆ = 1.126−0.035+0.036 M⊙, and R⋆ = 1.194−0.016+0.017 R⊙. We determine HD 5278 b’s mass and radius to be Mb = 7.8−1.4+1.5 M⊕ and Rb = 2.45 ± 0.05R⊕. The derived mean density, ϱb = 2.9−0.5+0.6 g cm−3, is consistent with the bulk composition of a sub-Neptune with a substantial (~ 30%) water mass fraction and with a gas envelope comprising ~17% of the measured radius. Given the host brightness and irradiation levels, HD 5278 b is one of the best targetsorbiting G-F primaries for follow-up atmospheric characterization measurements with HST and JWST. We discover a second, non-transiting companion in the system, with a period of Pc = 40.87−0.17+0.18 days and a minimum mass of Mc sin ic = 18.4−1.9+1.8 M⊕. We study emerging trends in parameters space (e.g., mass, radius, stellar insolation, and mean density) of the growing population of transiting sub-Neptunes, and provide statistical evidence for a low occurrence of close-in, 10 − 15M⊕ companions around G-F primaries with Teff ≳ 5500 K.Publicación Acceso Abierto Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO(EDP Sciences, 2021-01-22) Borsa, F.; Allart, R.; Casasayas Barris, N.; Tabernero, H. M.; Zapatero Osorio, M. R.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Adibekyan, V.; Bourrier, V.; Demangeon, O. D. S.; Ehrenreich, D.; Pallé, E.; Sousa, S. G.; Lillo Box, J.; Lovis, C.; Micela, G.; Oshagh, M.; Poretti, E.; Sozzetti, A.; Allende Prieto, C.; Alibert, Y.; Amate, M.; Benz, W.; Bouchy, F.; Cabral, A.; Dekker, H.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Genova Santos, R.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Riva, M.; Suárez Mascareño, A.; Udry, S.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Cabral, A. [0000-0002-9433-871X]; Adibekyan, V. [0000-0002-0601-6199]; Santos, N. [0000-0003-4422-2919]; Nunes, N. [0000-0002-3837-6914]; Sozzetti, A. [0000-0002-7504-365X]; Suarez Mascareño, A. [0000-0002-3814-5323]Context. Ultra-hot Jupiters are excellent laboratories for the study of exoplanetary atmospheres. WASP-121b is one of the most studied; many recent analyses of its atmosphere report interesting features at different wavelength ranges. Aims. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in one-telescope mode, and one partial transit taken during the commissioning of the instrument in four-telescope mode. Methods. We take advantage of the very high S/N data and of the extreme stability of the spectrograph to investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. We pay particular attention to the removal of instrumental effects, and stellar and telluric contamination. The transmission spectrum is investigated through single-line absorption and cross-correlation with theoretical model templates. Results. By analyzing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter–McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052 ± 0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum thanks to the quality of our ESPRESSO data. We detected significant absorption in the transmission spectrum for Na, H, K, Li, Ca II, and Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of ~0.2% detected at the 6σ level. With the cross-correlation technique we confirmed the presence of Fe I, Fe II, Cr I, and V I. Hα and Ca II are present up to very high altitudes in the atmosphere (~1.44 Rp and ~2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.Publicación Acceso Abierto Broadband transmission spectroscopy of HD 209458b with ESPRESSO: evidence for Na, TiO, or both(EDP Sciences, 2020-12-01) Santos, N. C.; Cristo, E.; Demangeon, O. D. S.; Oshagh, M.; Allart, R.; Barros, S. C. C.; Borsa, F.; Bourrier, V.; Casasayas Barris, N.; Ehrenreich, D.; Faria, J. P.; Figueira, P.; Martins, J. H. C.; Micela, G.; Pallé, E.; Sozzetti, A.; Tabernero, H.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Bouchy, F.; Cabral, A.; Dekker, H.; Di Marcoantonio, P.; D´Odorico, V.; Dumusque, X.; Lavie, B.; Lo Curto, G.; Lovis, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Poretti, E.; Rivas, M.; Sousa, S. G.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); European Research Council (ERC); Agencia Estatal de Investigación (AEI); 0000-0003-4422-2919; 0000-0001-5992-7589; 0000-0001-7918-0355; 0000-0002-0715-8789; 0000-0003-0987-1593Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field. Aims. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD 209458b, to probe the broadband transmission optical spectrum of the planet. Methods. We applied the chromatic Rossiter–McLaughin method to derive the transmission spectrum of HD 209458b. We compared the results with previous HST observations and with synthetic spectra. Results. We recover a transmission spectrum of HD 209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Conclusions. Using the chromatic Rossiter–McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets.Publicación Acceso Abierto ESPRESSO at VLT On-sky performance and first results(EDP Sciences, 2021-01-19) Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Cabral, A.; Di Marcoantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; Mayor, M.; Mégevand, D.; Molaro, P.; Riva, M.; Zapatero Osorio, M. R.; Amate, M.; Manescau, A.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Barros, S. C. C.; Benz, W.; Bianco, A.; Borsa, F.; Bourrier, V.; Bouchy, F.; Broeg, C.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Damasso, M.; Deiries, S.; Delabre, B.; Demangeon, O. D. S.; Dumusque, X.; Ehrenreich, D.; Faria, J. P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J. L.; Maire, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Santana Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Sozzetti, A.; Sousa, S. G.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Australian Research Council; 0000-0002-9433-871X; 0000-0003-0513-8116; 0000-0002-4339-0550; 0000-0002-6728-244X; 0000-0003-2434-3625; 0000-0002-7504-365X; 0000-0002-7040-5498; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. ESPRESSO is the new high-resolution spectrograph of ESO’s Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims. We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s−1 during a single night and 50 cm s−1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s−1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields.Publicación Acceso Abierto ESPRESSO high-resolution transmission spectroscopy of WASP-76 b(EDP Sciences, 2021-02-19) Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas Barris, N.; Demangeon, O. D. S.; Ehrenreich, D.; Lillo Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, N. C.; Pepe, F.; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D´Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Genova Santos, R.; Hojjatpanah, S.; Lo Curto, G.; Lavie, B.; Martins, C. J. A. P.; Martins, J. H. C.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Poretti, E.; Seidel, J. V.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Aliverti, M.; Affolter, M.; Alves, D.; Amate, M.; Ávila, G.; Bandy, T.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Conconi, P.; Coelho, J.; Cumani, C.; Deiries, S.; Dekker, H.; Delabre, B.; Fragoso, A.; Genoni, M.; Genolet, L.; Hughes, I.; Knudstrup, J.; Kerber, F.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Di Marcoantonio, P.; Mégevand, D.; Monteiro, M.; Moschetti, M.; Mueller, E.; Modigliani, A.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Iwert, O.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Istituto Nazionale di Astrofisica (INAF); Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. [0000-0003-0513-8116]; Coelho, F. M. [0000-0002-4339-0550]; Faria, J. [0000-0002-6728-244X]; Santos, N. [0000-0003-4422-2919]Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.Publicación Acceso Abierto HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS .(Oxford Academics: Blackwell Publishing, 2020-01-15) Espinoza, N.; Brahm, R.; Henning, T.; Jordán, A.; Dorn, C.; Rojas, F.; Sarkis, P.; Kossakowski, D.; Schlecker, M.; Díaz, M. R.; Jenkins, J. S.; Aguilera Gómez, C.; Jenkins, J. M.; Twicken, J. D.; Collins, K. A.; Lissauer, J. J.; Armstrong, D. J.; Adibekyan, V.; Barrado, D.; Barros, S. C. C.; Battley, M.; Bayliss, D.; Bouchy, F.; Bryant, E. M.; Cooke, B. F.; Demangeon, O. D. S.; Dumusque, X.; Figueira, P.; Giles, H.; Lillo Box, J.; Lovis, C.; Nielsen, L. D.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Wheatley, P. J.; Turner, O.; Marmier, M.; Ségransan, D.; Ricker, G.; Latham, D.; Seager, S.; Winn, J. N.; Kielkopf, J. F.; Hart, R.; Wingham, G.; Jensen, E. L. N.; Helminiak, K. G.; Tokovinin, A.; Briceño, C.; Ziegler, C.; Law, N. M.; Mann, A. W.; Daylan, T.; Doty, J. P.; Guerrero, N.; Boyd, P.; Crossfield, I.; Morris, Robert L.; Henze, C. E.; Dean Chacon, A.; Comisión Nacional de Investigación Científica y Tecnológica (CONICYT); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Science and Technology Facilities Council (STFC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); National Science Centre, Poland (NCN); Millennium Institute of Astrophysics (MAS); Barrado, D. [https://orcid.org/0000-0002-5971-9242]; Lillo Box, J. [https://orcid.org/0000-0003-3742-1987]; Díaz, M. [https://orcid.org/0000-0002-2100-3257]; Wheatley, P. [https://orcid.org/0000-0003-1452-2240]; Nielsen, L. D. [https://orcid.org/0000-0002-5254-2499]; Figueira, P. [https://orcid.org/0000-0001-8504-283X]; Jenssen, E. [https://orcid.org/0000-0002-4625-7333]; Barros, S. [https://orcid.org/0000-0003-2434-3625]; Espinoza Pérez, N. [https://orcid.org/0000-0001-9513-1449]; Armstrong, D. J. [https://orcid.org/0000-0002-5080-4117]; Bayliss, D. [https://orcid.org/0000-0001-6023-1335]; Turner, O. [https://orcid.org/0000-0002-8216-2796]; Sousa, S. G. [https://orcid.org/0000-0001-9047-2965]; Kielpof, J. F. [https://orcid.org/0000-0003-0497-2651]We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition - similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.Publicación Restringido Nightside condensation of iron in an ultrahot giant exoplanet(Nature Research Journals, 2020-03-11) Ehrenreich, D.; Lovis, C.; Allart, R.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Borsa, F.; Demangeon, O. D. S.; Dumusque, X.; Casasayas Barris, N.; Séngrasan, D.; Sousa, S.; Abreu, M.; Adibekyan, V.; Affolter, M.; Allende Prieto, C.; Alibert, Y.; Aliverti, M.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Bolmont, É.; Bouchy, F.; Bourrier, V.; Broeg, C.; Cabral, A.; Calderone, G.; Pallé, E.; Cegla, H. M.; Cirami, R.; Coelho, João M. P.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Dekker, H.; Delabre, B.; Deiries, S.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Harada, N.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lendl, M.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M.; Monteiro, M. A.; Moschetti, M.; Muller, N.; Nunes, N.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia Milla, A.; Seidel, J. V.; Sosnowska, D.; Sozzetti, A.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Suárez Mascareño, A. [0000-0002-3814-5323]; Abreu, M. [0000-0002-0716-9568]; João M. P. Coelho. [0000-0002-4339-0550]; Monteiro, M. J. [0000-0003-0513-8116]; Tabernero, H. [0000-0002-8087-4298]; Nunes, N. J. [0000-0002-3837-6914]; Cabral, A. [0000-0002-9433-871X]; Molaro, P. [0000-0002-0571-4163]; Redaelli, E. M. A. [0000-0001-8185-2122]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Castro Alves, D. [0000-0001-7026-2514]; Seidel, J. V. [0000-0002-7990-9596]; Martins, C. J. A. P. [0000-0002-4886-9261]; Adibekyan, V. [0000-0002-0601-6199]; Zerbi, F. M. [0000-0002-9996-973X]; Monteiro, M. [0000-0001-5644-0898]; Mehner, A. [0000-0002-9564-3302]; Santos, N. [0000-0003-4422-2919]; Cegla, H. [0000-0001-8934-7315]; Sozzetti, A. [0000-0002-7504-365X]; Allart, R. [0000-0002-1199-9759]; Landoni, M. [0000-0001-5570-5081]; Coretti, I. [0000-0001-9374-3249]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Ultrahot giant exoplanets receive thousands of times Earth’s insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3,4,5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10,11,12,13,14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (‘evening’) and night-to-day (‘morning’) terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.Publicación Acceso Abierto Revisiting Proxima with ESPRESSO(EDP Sciences, 2020-07-13) Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas Alcaino, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Delabre, B.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Lillo Box, J. [0000-0003-3742-1987]; Faria, J. [0000-0002-6728-244X]; Nunes, N. J. [0000-0002-3837-6914]; Molaro, P. [0000-0002-0571-4163]; Mascareño, A. S. [0000-0002-3814-5323]; Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. P. F. G. [0000-0003-0513-8116]; Redaelli, E. M. A. [0000-0001-8185-2122]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Abreu, M. [0000-0002-0716-9568]; Coretti, I. [0000-0001-9374-3249]; Sozzetti, A. [0000-0002-7504-365X]; Adibekyan, V. [0000-0002-0601-6199]; Monteiro, M. [0000-0001-5644-0898]; Damasso, M. [0000-0001-9984-4278]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s−1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M⊕. In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M⊕. We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s−1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M⊕. We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M⊕ at periods shorter than 50 days.Publicación Acceso Abierto The atmosphere of HD 209458b seen with ESPRESSO No detectable planetary absorptions at high resolution(EDP Sciences, 2021-03-02) Casasayas Barris, N.; Pallé, E.; Strangret, M.; Bourrier, V.; Tabernero, H. M.; Yan, F.; Borsa, F.; Allart, R.; Zapatero Osorio, M. R.; Lovis, C.; Sousa, S. G.; Chen, G.; Oshagh, M.; Santos, N. C.; Pepe, F.; Rebolo, R.; Molaro, P.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Bouchy, F.; Demangeon, O. D. S.; Di Marcoantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Génova Santos, R.; Lavie, B.; Lillo Box, J.; Lo Curto, G.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Nunes, N. J.; Poretti, E.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; González Hernández, Carmen; National Natural Science Foundation of China (NSFC); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); Yan, F. [0000-0001-9585-9034]; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, Na I, Mg I, Fe I, Fe II, Ca I, V I, Hα, and K I. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported Na I, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum (~1700 at 590 nm) allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models.Publicación Acceso Abierto Two temperate earth-mass planets orbiting the nearby star GJ 1002(EDP Sciences, 2023-01-27) Suárez Mascareño, A.; González Álvarez, E.; Zapatero Osorio, M. R.; Lillo Box, J.; Faria, J. P.; Passegger, V. M.; Figueira, P.; Sozzetti, A.; Rebolo López, R.; Pepe, F.; Santos, N. C.; Cristiani, S.; Lovis, C.; Silva, André; Ribas, I.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Zechmeister, M.; Adibekyan, V.; Alibert, Y.; Béjar, V. J. S.; Benatti, S.; D´Odorico, V.; Damasso, M.; Delisle, J. B.; Di Marcantonio, P.; Dreizler, S.; Ehrenreich, D.; Hatzes, A. P.; Hara, N. C.; Henning, T.; Kaminski, A.; López González, M. J.; Martins, C. J. A. P.; Micela, G.; Montes, D.; Pallé, E.; Pedraz, S.; Rodríguez Martínez, Eloy; Rodríguez López, C.; Tal Or, L.; Sousa, S. G.; Udry, S.; González Hernández, Carmen; European Commission (EC); Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Consejo Superior de Investigaciones Científicas (CSIC); Fundacao para a Ciencia e a Tecnologia (FCT); Junta de Andalucía; Swiss National Science Foundation (SNSF); Cabildo de Gran CanariaWe report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ 1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5 V star GJ 1002 (relatively faint in the optical, V ~ 13.8 mag, but brighter in the infrared, J ~ 8.3 mag), located at 4.84 pc from the Sun. We analyse 139 spectroscopic observations taken between 2017 and 2021. We performed a joint analysis of the time series of the RV and full-width half maximum (FWHM) of the cross-correlation function (CCF) to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity. We detect the signal of two planets orbiting GJ 1002. GJ 1002 b is a planet with a minimum mass mp sin i of 1.08 ± 0.13 M⊕ with an orbital period of 10.3465 ± 0.0027 days at a distance of 0.0457 ± 0.0013 au from its parent star, receiving an estimated stellar flux of 0.67 F⊕. GJ 1002 c is a planet with a minimum mass mp sin i of 1.36 ± 0.17 M⊕ with an orbital period of 20.202 ± 0.013 days at a distance of 0.0738 ± 0.0021 au from its parent star, receiving an estimated stellar flux of 0.257 F⊕. We also detect the rotation signature of the star, with a period of 126 ± 15 days. We find that there is a correlation between the temperature of certain optical elements in the spectrographs and changes in the instrumental profile that can affect the scientific data, showing a seasonal behaviour that creates spurious signals at periods longer than ~200 days. GJ 1002 is one of the few known nearby systems with planets that could potentially host habitable environments. The closeness of the host star to the Sun makes the angular sizes of the orbits of both planets (~9.7 mas and ~15.7 mas, respectively) large enough for their atmosphere to be studied via high-contrast high-resolution spectroscopy with instruments such as the future spectrograph ANDES for the ELT or the LIFE mission.Publicación Acceso Abierto WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO(EDP Sciences, 2020-12-16) Allart, R.; Pino, L.; Lovis, C.; Sousa, S. G.; Casasayas Barris, N.; Zapatero Osorio, M. R.; Cretignier, M.; Pallé, E.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Borsa, F.; Bourrier, V.; Demangeon, O. D. S.; Ehrenreich, D.; Lavie, B.; Lendl, M.; Lillo Box, J.; Micela, G.; Oshagh, M.; Sozzetti, A.; Tabernero, H.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Amate, M.; Benz, W.; Bouchy, F.; Cabral, A.; Dekker, H.; D´Odorico, V.; Di Marcantonio, P.; Dumusque, X.; Figueira, P.; Genova Santos, R.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, N. J.; Poretti, E.; Riva, M.; Suárez Mascareño, A.; Udry, S.; Zerbi, Filippo M.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF)Context. The study of exoplanet atmospheres is essential for understanding the formation, evolution, and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-the-art spectrographs at low- and high-spectral resolution is key to our understanding of atmospheric structure and composition. Aims. We observed two transits of the close-in sub-Saturn-mass planet, WASP-127b, with ESPRESSO in the frame of the Guaranteed Time Observations Consortium. We aim to use these transit observations to study the system architecture and the exoplanet atmosphere simultaneously. Methods. We used the Reloaded Rossiter-McLaughlin technique to measure the projected obliquity lambda and the projected rotational velocity nu(eq).sin(i(*)). We extracted the high-resolution transmission spectrum of the planet to study atomic lines. We also proposed a new cross-correlation framework to search for molecular species and we applied it to water vapor. Results. The planet is orbiting its slowly rotating host star (nu(eq).sin(i(*)) = 0.53(-0.05)(+0.07) km s(-1)) on a retrograde misaligned orbit (lambda = -128.41(+5.60)degrees(-5.46)). We detected the sodium line core at the 9-sigma confidence level with an excess absorption of 0.34 +/- 0.04%, a blueshift of 2.74 +/- 0.79 km s(-1), and a full width at half maximum of 15.18 +/- 1.75 km s(-1). However, we did not detect the presence of other atomic species but set upper limits of only a few scale heights. Finally, we put a 3-sigma upper limit on the average depth of the 1600 strongest water lines at equilibrium temperature in the visible band of 38 ppm. This constrains the cloud-deck pressure between 0.3 and 0.5 mbar by combining our data with low-resolution data in the near-infrared and models computed for this planet. Conclusions. WASP-127b, with an age of about 10 Gyr, is an unexpected exoplanet by its orbital architecture but also by the small extension of its sodium atmosphere (similar to 7 scale heights). ESPRESSO allows us to take a step forward in the detection of weak signals, thus bringing strong constraints on the presence of clouds in exoplanet atmospheres. The framework proposed in this work can be applied to search for molecular species and study cloud-decks in other exoplanets.