Examinando por Autor "Oter, J. M."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto COTS-Based Wireless Magnetic Sensor for Small Satellites(Institute of Electrical and Electronics Engineers, 2010-05-06) Díaz Michelena, M.; Arruego, I.; Oter, J. M.; Guerrero, H.We report on the utilization of a commercial off-the-shelf (COTS) magnetic sensor for the mission NANOSAT-01 and the set of tests that have been developed to up-screen it. The magnetic sensor head is a Wheatstone bridge formed by four anisotropic magnetoresistances (AMR). AMR sensors are an adequate choice for medium- to high-sensitivity (~3 mV/V/G) and resolution (~ 3 ¿G) requirements, mostly due to their low weight and volume that are so interesting for the aerospace industry. The whole system installed in NANOSAT-01 is formed by two biaxial sensors with two redundant PCBs (printed circuit boards) of RAD-HARD proximity electronics, which conditions the AMR output signal, measure the temperature, and resets the AMR. This magnetic sensor belongs to the attitude control system (ACS) of the satellite.Publicación Restringido Proton monitor las dos torres: First Intercomparison of In-Orbit Results(Institute of Electrical and Electronics Engineers, 2012-03-09) Jiménez, J. J.; Oter, J. M.; Hernando, C.; Ibarmia, S.; Hajdas, W.; Sanchez Péramo, J.; Álvarez, Maite; Arruego, I.; Guerrero, H.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA)A new proton monitor on board NANOSAT-1B-Las Dos Torres (translated: The Two Towers)-and its preliminary results after two years in orbit and its intercomparison to a RadFET and to trapped proton models are presented. This satellite was fully developed by INTA (National Institute of Aerospace Technology, Spain) and was launched on July 29, 2009. The instrument includes two stacks of radiation-sensing elements: the "dark" and "light" towers. The displacement damage was measured, both through the increase of a photodiode dark current ("dark tower") and the decrease of the photocurrent signal in a photodiode optically linked to light emitting diodes ("light tower"). The instrument was also designed to monitor the ionization current of the photodiodes and the variations in the proton flux in the South Atlantic Anomaly.