Examinando por Autor "Navarro, Sara"
Mostrando 1 - 6 de 6
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Calibration and performance of the NIKA2 camera at the IRAM 30-m Telescope.(EDP Sciences, 2020-05-18) Perotto, L.; Ponthieu, N.; Marcías Pérez, J. F.; Adam, R.; Ade, P.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoit, A.; Berta, S.; Bideaud, A.; Bourrion, O.; Calvo, M.; Catalano, A.; Comis, B.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Gómez, A.; Goupy, J.; John, D.; Kéruzoré, F.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, L. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Navarro, Sara; Peñalver, J.; Pierfederici, F.; Pisano, G.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Shu, S.; Sievers, A.; Tucker, C.; Zylka, R.; Díaz García, Pedro; Romero Guzman, Catalina; Agence Nationale de la Recherche (ANR); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Centre National D'Etudes Spatiales (CNES); 0000-0001-6937-5052; 0000-0002-3101-0768; 0000-0002-5385-2763; 0000-0001-6478-7883; 0000-0001-9995-4792; 0000-0002-8752-1401; 0000-0001-7859-2139; 0000-0002-6370-2101; 0000-0001-6397-5516; 0000-0002-1371-5705; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. NIKA2 is a dual-band millimetre continuum camera of 2 900 kinetic inductance detectors, operating at 150 and 260 GHz, installed at the IRAM 30-m telescope in Spain. Open to the scientific community since October 2017, NIKA2 will provide key observations for the next decade to address a wide range of open questions in astrophysics and cosmology. Aims. Our aim is to present the calibration method and the performance assessment of NIKA2 after one year of observation. Methods. We used a large data set acquired between January 2017 and February 2018 including observations of primary and secondary calibrators and faint sources that span the whole range of observing elevations and atmospheric conditions encountered by the IRAM 30-m telescope. This allowed us to test the stability of the performance parameters against time evolution and observing conditions. We describe a standard calibration method, referred to as the "Baseline" method, to translate raw data into flux density measurements. This includes the determination of the detector positions in the sky, the selection of the detectors, the measurement of the beam pattern, the estimation of the atmospheric opacity, the calibration of absolute flux density scale, the flat fielding, and the photometry. We assessed the robustness of the performance results using the Baseline method against systematic effects by comparing results using alternative methods. Results. We report an instantaneous field of view of 6.5 ' in diameter, filled with an average fraction of 84%, and 90% of valid detectors at 150 and 260 GHz, respectively. The beam pattern is characterised by a FWHM of 17.6 '' +/- 0.1 '' and 11.1 '' +/- 0.2 '', and a main-beam efficiency of 47%+/- 3%, and 64%+/- 3% at 150 and 260 GHz, respectively. The point-source rms calibration uncertainties are about 3% at 150 GHz and 6% at 260 GHz. This demonstrates the accuracy of the methods that we deployed to correct for atmospheric attenuation. The absolute calibration uncertainties are of 5%, and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below 1% in both channels. The noise equivalent flux density at 150 and 260 GHz are of 9 +/- 1 mJy s(1/2) and 30 +/- 3 mJy s(1/2). This state-of-the-art performance confers NIKA2 with mapping speeds of 1388 +/- 174 and 111 +/- 11 arcmin(2) mJy(-2) h(-1) at 150 and 260 GHz. Conclusions. With these unique capabilities of fast dual-band mapping at high (better that 18 '') angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.Publicación Acceso Abierto Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS)(GU Advancing Earth and Space Science, 2023-01-17) Toledo, D.; Arruego, I.; Lemmon, M. T.; Gómez, L.; Montoro, F.; Hueso, R.; Newman, C. E.; Smith, M.; Viúdez Moreiras, Daniel; Martínez, G.; Vicente Retortillo, Á.; Sánchez Lavega, Agustín; De la Torre Juarez, M.; Rodríguez Manfredi, J. A.; Carrasco, I.; Yela González, M.; Jiménez, J. J.; García Menéndez, Elisa; Navarro, Sara; Gómez Elvira, J.; Harri, Ari-Matti; Polkko, J.; Hieta, M.; Genzer, M.; Murdoch, N.; Sebastián, E.; Apéstigue, Víctor; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno VascoThe Mars Environmental Dynamics Analyzer, onboard the Perseverance rover, is a meteorological station that is operating on Mars and includes, among other sensors, the radiometer Radiation and Dust Sensor (RDS). From RDS irradiance observations, a total of 374 dust devils (DDs) were detected for the first 365 sols of the mission (Ls = 6°–182°), which along with wind and pressure measurements, we estimated a DD frequency of formation at Jezero between 1.3 and 3.4 DD km−2 sol−1 (increasing as we move from spring into summer). This frequency is found to be smaller than that estimated at the Spirit or Pathfinder landing sites but much greater than that derived at InSight landing site. The maximum in DD frequency occurs between 12:00 and 13:00 local true solar time, which is when the convective heat flux and lower planetary boundary layer IR heating are both predicted to peak in Jezero crater. DD diameter, minimum height, and trajectory were studied showing (a) an average diameter of 29 m (or a median of 25 m) and a maximum and minimum diameter of 132 ± 63.4 and 5.6 ± 5.5 m; (b) an average minimum DD height of 231 m and a maximum minimum-height of 872 m; and (c) the DD migration direction is in agreement with wind measurements. For all the cases, DDs decreased the UV irradiance, while at visible or near-IR wavelengths both increases and decreases were observed. Contrary to the frequency of formation, these results indicate similar DD characteristics in average for the studied period.Publicación Restringido Experimental and numerical characterization of the Flow around the Mars 2020 Rover(Aerospace Research Central, 2018-04-30) Bardera, Rafael; García Magariño, A.; Gómez Elvira, J.; Marín Jiménez, M.; Navarro, Sara; Torres Redondo, J.; Carretero, Sara; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)The investigation of the environmental factors in Mars atmosphere is one of the issues of the NASA’s Mars Exploration Program about the potential for life on Mars. The future Mars 2020 rover will transport the Mars Environmental Dynamics Analyzer dedicated to obtain meteorological data, as well as other objectives, about wind speed and direction. High-quality wind data are required to build mathematical models of the Mars climate; therefore, powerful techniques are necessary to eliminate flow perturbations produced by the rover presence. The aim of this Paper is the characterization of the flow around the Mars 2020 rover, providing a deep insight into the environmental interaction of the Mars wind with the rover. A comparative study between numerical simulations versus wind-tunnel experimental results is conducted trying to investigate the influence of the rover on the flow measured by the Mars Environmental Dynamics Analyzer wind sensors. This study is addressed to perform an assessment of the reliability of numerical methods in the prediction of this kind of flow in Martian conditions, evaluating its capability to be used in the future to correct wind data coming from the Mars 2020 rover mission. The advancements in the numerical methods as compared with experimental results implies an advancement on the calibration methods in the space wind sensor instrumentation carried in the Mars 2020 rover.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, M. D.; Jaakonaho, I.; Genzer, M.; Vicente Retortillo, Á.; Viúdez Moreiras, Daniel; Ramos, M.; Saiz López, A.; Lepinette, A.; Wolff, M.; Sullivan, R. J.; Gómez Elvira, J.; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, I.; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Richardson, M. I.; Romeral, J.; Savijärv, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Apéstigue, Víctor; Zurita, S.; Romero Guzman, Catalina; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Á.; Martínez, G. M.; Toledo, D.; Sullivan, R.; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A. E.; Murdoch, N.; Sánchez Lavega, A.; Wolff, M. J.; Arruego, I.; Sebastián, E.; Navarro, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, M. D.; Lepinette, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, F.; Mcconnochie, T. H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María Paz; Mora, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, S. D.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.Publicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Arruego, I.; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Á.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Fernández Palma, A.; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, M.; Giménez, Á.; Gómez Elvira, J.; Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez, J. J.; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette, A.; Lemmon, M. T.; López, G.; Madsen, N. S.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro, Sara; Newman, C. E.; Ortega, C.; Parrondo, M. C.; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Ramos, M.; Richardson, M. I.; Romeral, J.; Runyon, K. D.; Saiz López, A.; Sánchez Lavega, A.; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, M. D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Apéstigue, Víctor; Ferrándiz, Ricardo; Romero Guzman, Catalina; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.