Examinando por Autor "Montoro, F."
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS)(GU Advancing Earth and Space Science, 2023-01-17) Toledo, D.; Arruego, I.; Lemmon, M. T.; Gómez, L.; Montoro, F.; Hueso, R.; Newman, C. E.; Smith, M.; Viúdez Moreiras, Daniel; Martínez, G.; Vicente Retortillo, Á.; Sánchez Lavega, Agustín; De la Torre Juarez, M.; Rodríguez Manfredi, J. A.; Carrasco, I.; Yela González, M.; Jiménez, J. J.; García Menéndez, Elisa; Navarro, Sara; Gómez Elvira, J.; Harri, Ari-Matti; Polkko, J.; Hieta, M.; Genzer, M.; Murdoch, N.; Sebastián, E.; Apéstigue, Víctor; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno VascoThe Mars Environmental Dynamics Analyzer, onboard the Perseverance rover, is a meteorological station that is operating on Mars and includes, among other sensors, the radiometer Radiation and Dust Sensor (RDS). From RDS irradiance observations, a total of 374 dust devils (DDs) were detected for the first 365 sols of the mission (Ls = 6°–182°), which along with wind and pressure measurements, we estimated a DD frequency of formation at Jezero between 1.3 and 3.4 DD km−2 sol−1 (increasing as we move from spring into summer). This frequency is found to be smaller than that estimated at the Spirit or Pathfinder landing sites but much greater than that derived at InSight landing site. The maximum in DD frequency occurs between 12:00 and 13:00 local true solar time, which is when the convective heat flux and lower planetary boundary layer IR heating are both predicted to peak in Jezero crater. DD diameter, minimum height, and trajectory were studied showing (a) an average diameter of 29 m (or a median of 25 m) and a maximum and minimum diameter of 132 ± 63.4 and 5.6 ± 5.5 m; (b) an average minimum DD height of 231 m and a maximum minimum-height of 872 m; and (c) the DD migration direction is in agreement with wind measurements. For all the cases, DDs decreased the UV irradiance, while at visible or near-IR wavelengths both increases and decreases were observed. Contrary to the frequency of formation, these results indicate similar DD characteristics in average for the studied period.