Examinando por Autor "Lamperti, I."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Physics of ULIRGs with MUSE and ALMA: The PUMA project II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum(EDP Sciences, 2021-07-12) Pereira Santaella, M.; Colina, L.; García Burillo, S.; Lamperti, I.; González Alfonso, E.; Perna, M.; Arribas, S.; Alonso Herrero, A.; Aalto, S.; Combes, F.; Labiano, Á.; Piqueras López, J.; Rigopoulou, D.; Van der Werf, P. P.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); Science and Technology Facilities Council (STFC); Pereira Santaella, M. [0000-0002-4005-9619]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We analyze new high-resolution (400 pc) ∼220 GHz continuum and CO(2–1) Atacama Large Millimeter Array (ALMA) observations of a representative sample of 23 local (z < 0.165) ultra-luminous infrared systems (ULIRGs; 34 individual nuclei) as part of the “Physics of ULIRGs with MUSE and ALMA” (PUMA) project. The deconvolved half-light radii of the ∼220 GHz continuum sources, rcont, are between < 60 pc and 350 pc (median 80–100 pc). We associate these regions with the regions emitting the bulk of the infrared luminosity (LIR). The good agreement, within a factor of 2, between the observed ∼220 GHz fluxes and the extrapolation of the infrared gray-body as well as the small contributions from synchrotron and free–free emission support this assumption. The cold molecular gas emission sizes, rCO, are between 60 and 700 pc and are similar in advanced mergers and early interacting systems. On average, rCO are ∼2.5 times larger than rcont. Using these measurements, we derived the nuclear LIR and cold molecular gas surface densities (ΣLIR = 1011.5 − 1014.3 L⊙ kpc−2 and ΣH2 = 102.9 − 104.2 M⊙ pc−2, respectively). Assuming that the LIR is produced by star formation, the median ΣLIR corresponds to ΣSFR = 2500 M⊙ yr−1 kpc−2. This ΣSFR implies extremely short depletion times, ΣH2/ΣSFR < 1–15 Myr, and unphysical star formation efficiencies > 1 for 70% of the sample. Therefore, this favors the presence of an obscured active galactic nucleus (AGN) in these objects that could dominate the LIR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (rcont < 120 pc) with high mid-infrared excess emission (ΔL6−20 μm/LIR) found in optically classified AGN; and (b) nuclei following a relation with decreasing ΔL6−20 μm/LIR for decreasing rcont. The majority, 60%, of the nuclei in interacting systems lie in the low-rcont end (<120 pc) of this relation, while this is the case for only 30% of the mergers. This suggests that in the early stages of the interaction, the activity occurs in a very compact and dust-obscured region while, in more advanced merger stages, the activity is more extended, unless an optically detected AGN is present. Approximately two-thirds of the nuclei have nuclear radiation pressures above the Eddington limit. This is consistent with the ubiquitous detection of massive outflows in local ULIRGs and supports the importance of the radiation pressure in the outflow launching process.Publicación Acceso Abierto SUPER IV. CO(J = 3–2) properties of active galactic nucleus hosts at cosmic noon revealed by ALMA(EDP Sciences, 2021-02-16) Circosta, C.; Mainieri, V.; Lamperti, I.; Padovani, P.; Bischetti, M.; Harrison, C. M.; Kakkad, D.; Zanella, A.; Vietri, G.; Lanzuisi, G.; Salvato, M.; Brusa, M.; Carniani, S.; Cicone, C.; Cresci, G.; Feruglio, C.; Husemann, B.; Mannucci, F.; Marconi, A.; Perna, M.; Piconcelli, E.; Puglisi, A.; Saintonge, A.; Schramm, M.; Vignali, C.; Zappacosta, L.; Science and Technology Facilities Council (STFC); Comunidad de Madrid; Mannucci, F. [0000-0002-4803-2381]Feedback from active galactic nuclei (AGN) is thought to be key in shaping the life cycle of their host galaxies by regulating star-formation activity. Therefore, to understand the impact of AGN on star formation, it is essential to trace the molecular gas out of which stars form. In this paper we present the first systematic study of the CO properties of AGN hosts at z ≈ 2 for a sample of 27 X-ray selected AGN spanning two orders of magnitude in AGN bolometric luminosity (log Lbol / erg s−1 = 44.7 − 46.9) by using ALMA Band 3 observations of the CO(3-2) transition (∼1″ angular resolution). To search for evidence of AGN feedback on the CO properties of the host galaxies, we compared our AGN with a sample of inactive (i.e., non-AGN) galaxies from the PHIBSS survey with similar redshift, stellar masses, and star-formation rates (SFRs). We used the same CO transition as a consistent proxy for the gas mass for the two samples in order to avoid systematics involved when assuming conversion factors (e.g., excitation corrections and αCO). By adopting a Bayesian approach to take upper limits into account, we analyzed CO luminosities as a function of stellar masses and SFRs, as well as the ratio LCO(3–2)′/M∗ (a proxy for the gas fraction). The two samples show statistically consistent trends in the LCO(3–2)′−LFIR and LCO(3–2)′−M∗ planes. However, there are indications that AGN feature lower CO(3-2) luminosities (0.4–0.7 dex) than inactive galaxies at the 2–3σ level when we focus on the subset of parameters where the results are better constrained (i.e., LFIR ≈ 1012.2 L⊙ and M* > 1011 M⊙) and on the distribution of the mean log(LCO(3–2)′/M∗). Therefore, even by conservatively assuming the same excitation factor r31, we would find lower molecular gas masses in AGN, and assuming higher r31 would exacerbate this difference. We interpret our result as a hint of the potential effect of AGN activity (such as radiation and outflows), which may be able to heat, excite, dissociate, and/or deplete the gas reservoir of the host galaxies. Better SFR measurements and deeper CO observations for AGN as well as larger and more uniformly selected samples of both AGN and inactive galaxies are required to confirm whether there is a true difference between the two populations.