Examinando por Autor "Lalla, E."
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Analytical database of Martian minerals (ADaMM): Project synopsis and Raman data overview(Wiley Analytical Science, 2021-08-12) Veneranda, M.; Sanz Arranz, A.; Manrique, J. A.; Saiz, M.; García Prieto, C.; Pascual Sánchez, E.; Medina, J.; Konstantinidis, M.; Lalla, E.; Moral, A.; Nieto, L. M.; Rull, F.; López Reyes, G.; Agencia Estatal de Investigación (AEI); European Commission (EC); Veneranda, M. [0000-0002-7185-2791]; Lalla, E. A. [0000-0002-0005-1006]; Moral, A. G. [0000-0002-6190-8560]; López Reyes, G. [0000-0003-1005-1760]The Mars2020/Perseverance and ExoMars/Rosalind Franklin rovers are both slated to return the first Raman spectra ever collected from another planetary surface, Mars. In order to optimize the rovers scientific outcome, the scientific community needs to be provided with tailored tools for data treatment and interpretation. Responding to this need, the purpose of the Analytical Database of Martian Minerals (ADaMM) project is to build an extended multianalytical database of mineral phases that have been detected on Mars or are expected to be found at the landing sites where the two rovers will operate. Besides the use of conventional spectrometers, the main objective of the ADaMM database is to provide access to data collected by means of laboratory prototypes simulating the analytical performances of the spectroscopic systems onboard the Mars 2020 and ExoMars rovers. Planned to be released to the public in 2022, ADaMM will also provide access to data treatment and visualization tools developed in the framework of the mentioned space exploration missions. As such, the present work seeks to provide an overview of the ADaMM online platform, spectral tools, and mineral collection. In addition to that, the manuscript describes the Raman spectrometers used to analyze the mineral collection and presents a representative example of the analytical performance ensured by the Raman prototypes assembled to simulate the Raman Laser Spectrometer (RLS) and SuperCam systems.Publicación Restringido Raman characterization of terrestrial analogs from the AMADEE‐18 astronaut simulated mission using the ExoMars RLS simulator: Implications for Mars(Wiley Analytical Science, 2020-11-09) Lalla, E.; Konstantinidis, M.; López Reyes, G.; Daly, M. G.; Veneranda, M.; Manrique, J. A.; Groemer, G.; Vago, J. L.; Rull, F.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Veneranda, M. [0000-0002-7185-2791]; Daly, M. [0000-0002-3733-2530]; Lalla, E. A. [0000-0002-0005-1006]; Konstantinidis, M. [0000-0002-5074-9023]; Manrique, J. A. [0000-0002-2053-2819]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Between February 1 and February 28, 2018, the Austrian Space Forum, in cooperation with research teams from 25 nations, conducted the AMADEE‐18 mission—a human‐robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. As a part of the AMADEE‐18 simulated Mars human exploration mission, the Remote Science Support team investigated the Dhofar area (Oman) to qualify it as a potential Mars analog site. The motivation of this research was to study and register selected samples collected by the analog astronauts during the AMADEE‐18 mission with the European Space Agency (ESA) ExoMars Raman Laser Spectrometer (RLS) simulator, compare the results with standard laboratory measurements, and establish the implication of the results to the future ESA ExoMars mission. The Raman measurements identified minerals such as carbonates (calcite and dolomite), feldspar and plagioclase (albite, anorthite, orthoclase, and sanidine), Fe‐oxides (goethite, hematite, and magnetite), and Ti‐oxide (anatase), each relevant to planetary exploration. As we have presented here, Raman spectroscopy is a powerful tool for detecting the presence of organic molecules, particularly by analyzing the principal vibration of CC and CH bonds. It has also been shown that portable Raman spectroscopy is a relevant tool for in situ field studies such as those conducted during extra‐vehicular activities (EVA) in simulated missions like the AMADEE‐18 and the future AMADEE‐2020 campaign.Publicación Restringido Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover(Wiley Analytical Science, 2020-01-23) López Reyes, G.; Pilorget, C.; Moral, A.; Manrique, J. A.; Berrocal, A.; Veneranda, M.; Rull, F.; Medina, J.; Hamm, V.; Bibring, J. P.; Rodríguez, J. A.; Pérez Canora, C.; Mateo Martí, Eva; Prieto Ballesteros, O.; Lalla, E.; Vago, J. L.; Sanz de la Rosa, Andrea; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Manrique, J. A. [0000-0002-2053-2819]; Moral, A. G. [0000-0002-6190-8560]; Venerada, M. [0000-0002-7185-2791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same sample target areas will be investigated using complementary analytical methods—infrared spectrometry, Raman spectrometry, and laser desorption mass spectrometry—to establish mineralogical and organic chemistry composition. Fundamental for implementing this cooperative science strategy is the Raman Laser Spectrometer (RLS) calibration target (CT). The RLS CT features a polyethylene terephthalate disk used for RLS calibration and verification of the instrument during the mission. In addition, special patterns have been recorded on the RLS CT disk that the other instruments can detect and employ to determine their relative position. In this manner, the RLS CT ensures the spatial correlation between the three analytical laboratory instruments: MicrOmega, RLS, and MOMA. The RLS CT has been subjected to a series of tests to qualify it for space utilization and to characterize its behavior during the mission. The results from the joint work performed by the RLS and MicrOmega instrument teams confirm the feasibility of the “combined science” approach envisioned for ExoMars rover operations, whose science return is optimized when complementing the RLS and MicrOmega joint analysis with the autonomous RLS operation.Publicación Acceso Abierto Raman semi-quantification on Mars: ExoMars RLS system as a tool to better comprehend the geological evolution of martian crust(Elsevier BV, 2021-10-13) Veneranda, M.; Manrique, J. A.; García Prieto, C.; Sanz Arranz, A.; Lalla, E.; Kostantinidis, M.; Moral, A.; Medina, J.; Rull, F.; Nieto, L. M.; López Reyes, G.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Redes de Excelencia, SIGUE-Mars: Ciencia e Instrumentación para el estudio de procesos (bio)geoquímicos en marte, RED2018-102600-TThis work presents the latest chemometric tools developed by the RLS science team to optimize the scientific outcome of the Raman system onboard the ExoMars 2022 rover. Feldspar, pyroxene and olivine samples were first analyzed through the RLS ExoMars Simulator to determine the spectroscopic indicators to be used for a proper discrimination of mineral phases on Mars. Being the main components of Martian basaltic rocks, lepidocrocite, augite and forsterite were then used as mineral proxies to prepare binary mixtures. By emulating the operational constraints of the RLS, Raman datasets gathered from laboratory mixtures were used to build external calibration curves. Providing excellent coefficients of determination (R2 0.9942÷0.9997), binary curves were finally used to semi-quantify ternary mixtures of feldspar, pyroxene and olivine minerals. As Raman results are in good agreement with real concentration values, this work suggests the RLS could be effectively used to perform semi-quantitative mineralogical studies of the basaltic geological units found at Oxia Planum. As such, crucial information about the geological evolution of Martian Crust could be extrapolated. In light of the outstanding scientific impact this analytical method could have for the ExoMars mission, further methodological improvements to be discussed in a dedicated work are finally proposed.