Examinando por Autor "Ibarmia, S."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Data Analysis and Results of the Radiation-Tolerant Collaborative Computer On-Board OPTOS CubeSat(Hindawi, 2019-02-12) Rodríguez, Santiago; Ibarmia, S.; Rivas, J.; López Buedo, S.; López Ongil, C.; Portela García, M.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA); Universidad Carlos III de Madrid (UC3M); Universidad Autónoma de Madrid (UAM)The current evolution of the space missions demands to increase the computing capacities of the on-board computer while reducing its power consumption. This requirement evolves faster than the ability of the manufacturers to develop better space-qualified processors. To meet the strong requirements, the National Institute of Aerospace Technology has developed a distributed on-board computer based on commercial off-the-shelf (COTS). This computer, named OPTOS, provides enhanced computational capacities with respect to what computers of other small satellites typically provide. To maintain the reliability needed to perform typical critical activities such as real-time maintenance or current surveillance, authors have conceived a set of collaborative hardening techniques, taking advantage of the distributed architecture of the OPTOS On-Board Computer. The 3-year mission data analysis shows the feasibility of the collaborative hardening techniques implemented, despite using SEU sensitive devices. The authors describe the processes and tools used to analyse the data and clearly expose the functional errors found at unit level, while the system remains unfaulty and reliable thanks to the collaborative techniques.Publicación Acceso Abierto ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman Laser Spectrometer(Nature Research Journals, 2021-01-14) Veneranda, M.; López Reyes, G.; Saiz, J.; Manrique, J. A.; Sanz Arranz, A.; Medina, J.; Moral, A.; Seoane, L.; Ibarmia, S.; Rull, F.; European Research Council (ERC); Agencia Estatal de Investigación (AEI)In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system). The results were later complemented in the laboratory using a bench top RLS operation simulator and a X-Ray diffractometer (XRD). By simulating the operational and analytical constraints of the ExoMars mission, the two RLS representative instruments effectively disclosed the mineralogical composition of the drilled cores (k-feldspar, plagioclase, quartz, muscovite and rutile as main components), reaching the detection of minor phases (e.g., additional phyllosilicate and calcite) whose concentration was below the detection limit of XRD. Furthermore, Raman systems detected many organic functional groups (–C≡N, –NH2 and C–(NO2)), suggesting the presence of nitrogen-fixing microorganisms in the samples. The Raman detection of organic material in the subsurface of a Martian analogue site presenting representative environmental conditions (high UV radiation, extreme aridity), supports the idea that the RLS could play a key role in the fulfilment of the ExoMars main mission objective: to search for signs of life on Mars.Publicación Restringido Proton monitor las dos torres: First Intercomparison of In-Orbit Results(Institute of Electrical and Electronics Engineers, 2012-03-09) Jiménez, J. J.; Oter, J. M.; Hernando, C.; Ibarmia, S.; Hajdas, W.; Sanchez Péramo, J.; Álvarez, Maite; Arruego, I.; Guerrero, H.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA)A new proton monitor on board NANOSAT-1B-Las Dos Torres (translated: The Two Towers)-and its preliminary results after two years in orbit and its intercomparison to a RadFET and to trapped proton models are presented. This satellite was fully developed by INTA (National Institute of Aerospace Technology, Spain) and was launched on July 29, 2009. The instrument includes two stacks of radiation-sensing elements: the "dark" and "light" towers. The displacement damage was measured, both through the increase of a photodiode dark current ("dark tower") and the decrease of the photocurrent signal in a photodiode optically linked to light emitting diodes ("light tower"). The instrument was also designed to monitor the ionization current of the photodiodes and the variations in the proton flux in the South Atlantic Anomaly.