Examinando por Autor "Giuliano, B. M."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Gas phase Elemental abundances in Molecular cloudS (GEMS) II. On the quest for the sulphur reservoir in molecular clouds: the H2S case(EDP Sciences, 2020-05-12) Navarro Almaida, D.; Le Gal, R.; Fuente, A.; Rivière Marichalar, P.; Wakelam, V.; Cazaux, S.; Caselli, P.; Laas, J. C.; Alonso Albi, T.; Loison, J. C.; Gerin, M.; Kramer, C.; Roueff, E.; Bachiller, R.; Commerçon, B.; Friesen, R.; García Burillo, S.; Goicoechea, J. R.; Giuliano, B. M.; Jiménez Serra, I.; Kirk, J. M.; Lattanzi, V.; Malinen, J.; Marcelino, N.; Martín Doménech, R.; Muñoz Caro, G. M.; Pineda, J.; Tercero, B.; Treviño Morales, S. P.; Roncero, O.; Tafalla, M.; Ward Thompson, D.; European Research Council (ERC); European Commission (EC); Agencia Estatal de Investigación (AEI); Navarro Almaida, D. [0000-0002-8499-7447]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when nH > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.Publicación Acceso Abierto Gas phase Elemental abundances in Molecular cloudS (GEMS) III. Unlocking the CS chemistry: the CS+O reaction(EDP Sciences, 2021-02-02) Bulut, N.; Roncero, O.; Aguado, A.; Loison, J. C.; Navarro Almaida, D.; Wakelam, V.; Fuente, A.; Roueff, E.; Le Gal, R.; Caselli, P.; Gerin, M.; Hickson, K. M.; Spezzano, S.; Riviére Marichalar, P.; Alonso Albi, T.; Bachiller, R.; Jiménez Serra, I.; Kramer, C.; Tercero, B.; Rodríguez Baras, M.; García Burillo, S.; Goicoechea, J. R.; Treviño Morales, S. P.; Esplugues, G.; Cazaux, S.; Commercon, B.; Laas, J. C.; Kirk, J.; Lattanzi, V.; Martín Doménech, R.; Muñoz Caro, G. M.; Pineda, J. E.; Ward Thompson, D.; Tafalla, M.; Marcelino, N.; Malinen, J.; Friesen, R.; Giuliano, B. M.; Agúndez, Marcelino; Hacar, A.; Agencia Estatal de Investigación (AEI); Marcelino, N. [0000-0001-7236-4047]; Roncero, O. [0000-0002-8871-4846]; Pineda, J. [0000-0002-3972-1978]; Agundez, M. [0000-0003-3248-3564]; Tafalla, M. [0000-0002-2569-1253]Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150−400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150−400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150–400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10−15 cm3 s−1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.Publicación Acceso Abierto Propargylimine in the laboratory and in space: millimetre-wave spectroscopy and its first detection in the ISM(EDP Sciences, 2020-08-20) Bizzocchi, L.; Prudenzano, D.; Rivilla, V. M.; Pietropolli Charmet, A.; Giuliano, B. M.; Caselli, P.; Martín Pintado, J.; Jiménez Serra, I.; Martín, S.; Requena Torres, M. A.; Rico Villas, F.; Guillemin, J. C.; Centre National D'Etudes Spatiales (CNES); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Rico Villas, F. [0000-0002-5351-3497]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Small imines containing up to three carbon atoms are present in the interstellar medium (ISM). As alkynyl compounds are abundant in this medium, propargylimine (2-propyn-1-imine, HC ≡C−CH =NH) thus represents a promising candidate for a new interstellar detection. Aims. The goal of the present work is to perform a comprehensive laboratory investigation of the rotational spectrum of propargylimine in its ground vibrational state in order to obtain a highly precise set of rest frequencies and to search for it in space. Methods. The rotational spectra of E and Z geometrical isomers of propargylimine have been recorded in the laboratory in the 83–500 GHz frequency interval. The measurements have been performed using a source-modulation millimetre-wave spectrometer equipped with a pyrolysis system for the production of unstable species. High-level ab initio calculations were performed to assist the analysis and to obtain reliable estimates for an extended set of spectroscopic quantities. We searched for propargylimine at 3 mm and 2 mm in the spectral survey of the quiescent giant molecular cloud G+0.693-0.027 located in the central molecular zone, close to the Galactic centre. Results. About 1000 rotational transitions have been recorded for the E- and Z-propargylimine, in the laboratory. These new data have enabled the determination of a very accurate set of spectroscopic parameters including rotational, quartic, and sextic centrifugal distortion constants. The improved spectral data allowed us to perform a successful search for this new imine in the G+0.693-0.027 molecular cloud. Eighteen lines of Z-propargylimine were detected at level >2.5σ, resulting in a column-density estimate of N = (0.24 ± 0.02) × 1014 cm−2. An upper limit was retrieved for the higher energy E isomer, which was not detected in the data. The fractional abundance (with respect to H2) derived for Z-propargylimine is 1.8 × 10−10. We discuss the possible formation routes by comparing the derived abundance with those measured in the source for possible chemical precursors.