Examinando por Autor "Giacobbe, P."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A super-Earth on a close-in orbit around the M1V star GJ 740 A HADES and CARMENES collaboration(EDP Sciences, 2021-04-07) Toledo Padrón, B.; Suárez Mascareño, A.; Rebolo, R.; Pinamonti, M.; Perger, M.; Scandariato, G.; Damasso, M.; Sozzetti, A.; Moldonado, J.; Desidera, S.; Ribas, I.; Micela, G.; Affer, L.; González Álvarez, E.; Leto, G.; Pagano, I.; Zanmar Sánchez, R.; Giacobbe, P.; Herrero, E.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Zechmeister, M.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Generalitat de CatalunyaContext. M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast, which favors the detection of low-mass planets. The abundance of super-Earth and Earth-like planets detected around this type of star motivates further such research on hosts without reported planetary companions. Aims. The HADES and CARMENES programs are aimed at carrying out extensive searches of exoplanetary systems around M-type stars in the northern hemisphere, allowing us to address, in a statistical sense, the properties of the planets orbiting these objects. In this work, we perform a spectroscopic and photometric study of one of the program stars (GJ 740), which exhibits a short-period RV signal that is compatible with a planetary companion. Methods. We carried out a spectroscopic analysis based on 129 HARPS-N spectra taken over a time span of 6 yr combined with 57 HARPS spectra taken over 4 yr, as well as 32 CARMENES spectra taken during more than 1 yr, resulting in a dataset with a time coverage of 10 yr. We also relied on 459 measurements from the public ASAS survey with a time-coverage of 8 yr, along with 5 yr of photometric magnitudes from the EXORAP project taken in the V, B, R, and I filters to carry out a photometric study. Both analyses were made using Markov chain Monte Carlo simulations and Gaussian process regression to model the activity of the star. Results. We present the discovery of a short-period super-Earth with an orbital period of 2.37756−0.00011+0.00013 d and a minimum mass of 2.96−0.48+0.50 M⊕. We offer an update to the previously reported characterization of the magnetic cycle and rotation period of the star, obtaining values of Prot = 35.563 ± 0.071 d and Pcycle = 2800 ± 150 d. Furthermore, the RV time series exhibits a possibly periodic long-term signal, which might be related to a Saturn-mass planet of ~100 M⊕.Publicación Acceso Abierto Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry(EDP Sciences, 2021-04-28) Klioner, S. A.; Mignard, F.; Lindegren, L.; Bastian, U.; McMillan, P. J.; Hernández, J.; Hobbs, D.; Ramos Lerate, M.; Biermann, M.; Bombrun, A.; De Torres, A.; Pailler, F.; Carlucci, T.; Castellani, M.; Carrasco, J. M.; Wyrzykowski, L.; Barbato, D.; Smart, R. L.; Reylé, C.; Chemin, L.; Evans, D. W.; Siddiqui, H. I.; Caffau, E.; Thuillot, W.; Chiavassa, A.; Comoretto, G.; Sarasso, M.; Cornez, T.; Babusiaux, C.; Crifo, F.; Dapergolas, A.; Crowley, C.; Janßen, Katja; Altmann, M.; Lebzelter, T.; Millar, N. R.; Fouron, C.; Charlot, P.; Molinaro, R.; Bertone, S.; Marchal, O.; Bouquillon, S.; Salgado, J; Lanzafame, A. C.; De Teodoro, P.; García Torres, M.; Rybicki, K. A.; Liao, S.; Delgado, A.; Granvik, M.; Souchay, J.; Buzzi, R.; Cowell, S.; Tauran, G.; Jordan, S.; Siltala, L.; Dolding, C.; Zhao, H.; Jonker, P. G.; Enke, H.; Julbe, F.; Sciacca, E.; Fedorets, G.; Faigler, S.; Panahi, A.; Rixon, G.; Livanou, E.; Weiler, M.; Del Peloso, E. F.; Juaristi Campillo, J.; Marcos Santos, M. M. S.; Bakker, J.; Hilger, T.; Franke, F.; Unger, N.; Garabato, D.; Teyssier, D.; Fouesneau, M.; Souami, D.; Nienartowicz, K.; Gavras, P.; Eyer, L.; Zurbach, C.; Gilmore, G.; Szegedi Elek, E.; Gómez, A.; Romero Gómez, M.; Musella, I.; Royer, F.; Licata, E.; Katz, D.; Fabre, C.; Szabados, L.; Hutton, A.; Viala, Y.; Haywood, M.; Mints, A.; Mowlavi, N.; Lindstrom, H. E. P.; Anglada Varela, E.; Holland, G.; Jansen, F.; Jasniewicz, G.; Haigron, R.; Seabroke, G. M.; Figueras, F.; Voutsinas, S.; Khanna, S.; Hauser, M.; Moitinho, A.; Busso, G.; Kochoska, A.; Kordopatis, G.; Guiraud, J.; Le Fustec, Y.; Gerlach, E.; Lecoeur Taibi, I.; Jordi, C.; Leccia, S.; Raiteri, C. M.; Barros, M.; Sanna, N.; Pourbaix, D.; Kervella, P.; Schultheis, M.; Garofalo, A.; Prusti, T.; Girona, S.; Madrero Pardo, P.; Ducourant, C.; Zwitter, T.; Morris, D.; Walton, N. A.; Marchant, J. M.; Pagani, C.; Gracia Abril, G.; Guy, L. P.; Lebreton, Y.; Blomme, R.; Riclet, F.; Plachy, E.; Panem, C.; Harrison, D. L.; Masip, A.; Poggio, E.; Masana, E.; Michalik, D.; Messina, S.; Süveges, M.; Riva, A.; González Núñez, J.; Managau, S.; Utrilla, E.; Plum, G.; Arenou, F.; Jevardat de Fombelle, G.; Montegriffo, P.; Damerdji, Y.; Morbidelli, R.; Abreu Aramburu, A.; Thévenin, F.; Anderson, R. I.; Muñoz, D.; Hestroffer, D.; Mora, A.; Benson, K.; Randich, S.; Ordénovic, C.; Noval, L.; Zucker, S.; Van Leeuwen, F.; Regibo, S.; Smith, M.; Mastrobuono Battisti, A.; Bellas Velidis, I.; Muinonen, K.; Galluccio, L.; Santoveña, R.; Sartoretti, P.; Álvarez Cid Fuentes, J.; Eappachen, D.; Penttilä, A.; Osborne, Paul; Pineau, F. X.; Busonero, D.; Baker, S. G.; Molina, D.; García Reinaldos, M.; Poujoulet, E.; Bellazzini, M.; Palicio, P. A.; Prsa, A.; Pulone, L.; Ajaj, M.; Ragaini, S.; Holl, B.; Re Fiorentin, P.; Pancino, E.; Rambaux, N.; Vanel, O.; Guerra, R.; Soubiran, C.; Richards, P. J.; Jean Antonie Piccolo, A.; Mulone, A. F.; Murphy, C. P.; Robichon, N.; Van Reeven, W.; Hodgkin, S. T.; Robin, A. C.; Rohrbasser, L.; Spagna, A.; Palaversa, L.; Balog, Z.; Rainer, M.; Baudesson-Stella, A.; Audard, M.; Teixeira, R.; Recio Blanco, A.; Sahlmann, J.; Tonello, N.; Álvarez, M. A.; Bailer Jones, C. A. L.; Sánchez Giménez, V.; Wevers, T.; Andrae, R.; Bucciarelli, B.; Robin, C.; De Souza, R.; Roegiers, T.; Carnerero, M. I.; Segol, M.; Boch, T.; Ségransan, D.; Del Pozo, E.; Steidelmüller, H.; Siebert, A.; Creevey, O. L.; Vallenari, A.; Bassilana, J. L.; Riello, M.; Solitro, F.; Heiter, U.; Ulla, A.; Lattanzi, M. G.; De Luise, F.; Salguero, E.; Brown, A. G. A.; Bartolomé, S.; Guerrier, A.; Geyer, R.; Di Stefano, E.; Martín Fleitas, J. M.; Taris, F.; Cooper, W. J.; Taylor, M. B.; Gutiérrez Sánchez, R.; Fabrizio, M.; Brouillet, N.; García Gutierrez, A.; Torra, F.; Steele, I. A.; Torra, J.; Turon, C.; Di Matteo, P.; Vaillant, M.; Carballo, R.; Vicente, D.; Vecchiato, A.; Dell´Oro, A.; Aerts, C.; Altavilla, G.; Crosta, M.; Rimoldini, L.; Cropper, M.; Chaoul, L.; Slezak, E.; Yoldas, A.; Cantat Gaudin, T.; Dafonte, C.; Zorec, J.; Portell, J.; Drimmel, R.; Fernique, P.; Gai, M.; Van Dillen, E.; Esquej, P.; Burgess, P. W.; De Angeli, F.; Carry, B.; Diener, C.; Rybizki, J.; Frémat, Y.; Gosset, E.; Barstow, M. A.; González Vidal, J. J.; Yvard, P.; Luri, X.; Huckle, H. E.; Messineo, M.; Giacobbe, P.; Nicolas, C.; Mann, R. G.; Krone Martins, A.; Panuzzo, P.; Marrese, P. M.; Lorca, A.; Fraile, E.; Tanga, P.; Sordo, R.; Cánovas, H.; De Ridder, J.; Sozzetti, A.; Lister, T. A.; Fabricius, C.; Löffler, W.; Fragkoudi, F.; Aguado, J. J.; Martin Polo, L.; Sagristà Sellés, A.; Berthier, J.; Le Campion, J. F.; Brugaletta, E.; Pagano, I.; Mazeh, T.; González Santamaría, I.; Morel, T.; Cellino, A.; Cheek, N.; Clementini, G.; Marinoni, S.; Davidson, M.; Hladczuk, N.; García Lario, P.; Fernández Hernández, J.; Bramante, L.; Delgado, H. E.; Diakite, S.; De Bruijne, J. H. J.; Sarro, L. M.; Karbevska, L.; Roux, W.; Halbwachs, J. L.; Hidalgo, S. L.; Leclerc, N.; Hatzidimitriou, D.; Barache, C.; Siopis, C.; Mor, R.; Delchambre, L.; Massari, D.; Stephenson, C. A.; Van Leeuwen, M.; Bernet, M.; Marshall, D. J.; David, M.; Accart, S.; Burlacu, A.; Osinde, J.; Hambly, N. C.; Pauwels, T.; Piersimoni, A. M.; Lammers, U.; Muraveva, T.; Alves, J.; Roelens, M.; Casamiquela, L.; Antoja, T.; Castro Sampol, P.; Molnár, L.; Balbinot, E.; Balaguer Núñez, L.; Helmi, A.; Lobel, A.; De March, R.; Ripepi, V.; Abbas, U.; Castro Ginard, A.; Delisle, J. B.; Sadowski, G.; Castañeda, J.; Bauchet, N.; Racero, E.; Becciani, U.; Spoto, F.; Samaras, N.; Orrù, G.; Semeux, D.; Bianchi, L.; Blanco Cuaresma, S.; Rowell, N.; Bossini, D.; Peñalosa Ester, X.; Bressan, A.; Breedt, E.; Giuffrida, G.; Marconi, M.; Marocco, F.; David, P.; Poretti, E.; Baines, D.; Butkevich, A. G.; Pawlak, M.; Ramos, P.; Cancelliere, R.; Fienga, A.; De Laverny, P.; Segovia, J. C.; Manteiga, Minia; Solano, Enrique; Forderung der wissenschaftlichen Forschung (FWF); Belgian federal Science Policy Office (BELSPO); Hertha Firnberg Programme; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Comite Francais d'Evaluation de la Cooperation Universitaire et Scientifique avec le Bresil (COFECUB); National Natural Science Foundation of China (NSFC); China Scholarship Council (CSC); European Commission (EC); European Research Council (ERC); Hungarian National Research, Development, and Innovation Office (NKFIH); Science Foundation Ireland (SFI); Israel Science Foundation (ISF); Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF); Netherlands Research School for Astronomy (NOVA); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); European Space Agency (ESA); Centre National D'Etudes Spatiales (CNES); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Narodowe Centrum Nauki (NCN); Slovenian Research Agency; Swedish National Space Agency (SNSA); United Kingdom Science and Technology Facilities Council (STFC); Universitat de Barcelona (UB); Generalitat de Catalunya; Xunta de Galicia; Deliste, J. B. [0000-0001-5844-9888]; Sozzeti, A. [0000-0002-7504-365X]; Unidad de Excelencia Científica María de Maeztu Instituto de Ciencias del Cosmos Universidad de Barcelona, MDM-2014-0369; Centro de Excelencia Científica Severo Ochoa, Instituto de Ciencias del Cosmos de la Universidad de Barcelona, SEV2015-0493Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions. Aims. The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution. Methods. Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate. Results. Our best estimate of the acceleration based on Gaia EDR3 is (2.32 ± 0.16) × 10−10 m s−2 (or 7.33 ±0.51 km s−1 Myr−1) towards α = 269.1° ± 5.4°, δ = −31.6° ± 4.1°, corresponding to a proper motion amplitude of 5.05 ±0.35 μas yr−1. This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 μas yr−1.Publicación Acceso Abierto Gaia Early Data Release 3 Structure and properties of the Magellanic Clouds(EDP Sciences, 2021-04-28) Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero Gómez, M.; Balbinot, E.; Castro Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Mulone, A. F.; Siebert, A.; Le Fustec, Y.; Helmi, A.; Pourbaix, D.; Brown, A. G. A.; Vallenari, A.; Guerrier, A.; Utrilla, E.; Samaras, N.; González Santamaría, I.; Piersimoni, A. M.; Evans, D. W.; Busso, G.; Garofalo, A.; Jansen, F.; Fernández Hernández, J.; Klioner, S. A.; Liao, S.; Muñoz, D.; González Núñez, J.; Morris, D.; Fragkoudi, F.; Pineau, F. X.; Hutton, A.; Leclerc, N.; Delgado, A.; Hilger, T.; Girona, S.; Torra, F.; Drimmel, R.; De Laverny, P.; Lattanzi, M. G.; García Lario, P.; Zwitter, T.; Castañeda, J.; Jordi, C.; Musella, I.; Halbwachs, J. L.; Fabricius, C.; Randich, S.; Siopis, C.; Guiraud, J.; Zurbach, C.; De Angeli, F.; Charlot, P.; Palicio, P. A.; Kostrzewa Rutkowska, Z.; Lindegren, L.; Ducourant, C.; Buzzi, R.; Rambaux, N.; Roelens, M.; Julbe, F.; Molinaro, R.; Tanga, P.; Castellani, M.; Gracia Abril, G.; García Reinaldos, M.; Teyssier, D.; Aerts, C.; Sordo, R.; Bellas Velidis, I.; Álvarez, M. A.; Berthier, J.; Rohrbasser, L.; Anglada Varela, E.; Sánchez Giménez, V.; Zorec, J.; Pulone, L.; Marocco, F.; Madrero Pardo, P.; Robin, A. C.; Davidson, M.; Riclet, F.; Dell´Oro, A.; Benson, K.; Turron, C.; Seabroke, G. M.; Boch, T.; Pawlak, M.; Salgado, J.; Millar, N. R.; Blomme, R.; Galluccio, L.; Fabre, C.; Segovia, J. C.; Rixon, G.; Siltala, L.; Messineo, R.; Rainer, M.; Holl, B.; Recio Blanco, A.; Jevardat de Fombelle, G.; Jordan, S.; Ajaj, M.; Biermann, M.; Van Leeuwen, F.; Szegedi Elek, E.; Bertone, S.; Hodgkin, S. T.; Moitinho, A.; Bragaglia, A.; Muinonen, K.; Regibo, S.; Slezak, E.; Brouillet, N.; Massari, D.; Taris, F.; Pailler, F.; Marrese, P. M.; Ramos Lerate, M.; Lindstrom, H. E. P.; Osinde, J.; Morbidelli, R.; Burgess, P. W.; Sozzetti, A.; Ulla, A.; Breedt, E.; Heiter, U.; Van Reeven, W.; Mora, A.; Arenou, F.; Busonero, D.; Destroffer, D.; Richards, P. J.; De Luise, F.; Hatzidimitriou, D.; Abbas, U.; Kervella, P.; Steidelmüller, H.; Poujoulet, E.; Pancino, E.; Abreu Aramburu, A.; Haywood, M.; Van Dillen, E.; Yoldas, A.; Segol, M.; Balog, Z.; Juaristi Campillo, J.; Barbato, D.; Bressan, A.; Barstow, M. A.; Delisle, J. B.; Balaguer Núñez, L.; Bauchet, N.; Di Stefano, E.; Yvard, P.; Enke, H.; Bakker, J.; Hambly, N. C.; Torra, J.; Soubiran, C.; Robin, C.; David, M.; Bossini, D.; Baines, D.; Baudesson Stella, A.; Carry, B.; Muraveva, T.; Geyer, R.; Süveges, M.; Katz, D.; Schultheis, M.; Becciani, U.; Bramante, S.; Marcos Santos, M. M. S.; Cropper, M.; Mowlavi, N.; Álvarez Cid Fuentes, J.; Unger, C.; Carballo, R.; Babusiaux, C.; Carnerero, M. I.; Carrasco, J. M.; Diakite, S.; Cioni, M. R. L.; Altmann, M.; Chaoul, L.; Gavras, P.; Cantat Gaudin, T.; Comoretto, G.; Giuffrida, G.; Cornez, T.; Vicente, D.; Nicolas, C.; Granvik, M.; Andrae, R.; Antoja, T.; Chiavassa, A.; Vecchiato, A.; Sartoretti, P.; Souchay, J.; Semeux, D.; Bernet, M.; De Ridder, J.; De Souza, R.; Caffau, E.; De Torres, A.; Cooper, W. J.; Roegiers, T.; Guy, L. P.; Cánovas, H.; Crowley, C.; Lebreton, Y.; Prusti, T.; Del Peloso, E. F.; Thévenin, F.; Tonello, N.; Crifo, F.; Del Pozo, E.; Ordénovic, C.; Damerdji, Y.; Gosset, E.; Guerra, R.; Fernique, P.; Peñalosa Esteller, X.; González Vidal, J. J.; Fouron, C.; Lister, T. A.; Fedorets, G.; Franke, F.; Lammers, U.; Haigron, R.; Marchant, J. M.; Van Leeuwen, M.; Butkevich, A. G.; Rimoldini, L.; Wyrzykowski, L.; Lasne, Y.; Gilmore, G.; Fabrizio, M.; Gai, M.; Bianchi, L.; Janßen, Katja; Mignard, F.; Portell, J.; Fouesneau, M.; Garabato, D.; Gómez, A.; Rybicki, K. A.; Smith, M.; Alves, J.; Creevey, O. L.; Cellino, A.; Holland, G.; Löffler, W.; Jasniewicz, G.; Lobel, A.; Hernández, J.; Bartolomé, S.; Karbevska, L.; Molina, D.; Hobbs, D.; Kochoska, A.; Morel, T.; Kordopatis, G.; Anderson, R. I.; Murphy, C. P.; Bassilana, J. L.; Esquej, P.; Khanna, S.; Delchambre, L.; Riello, M.; Roux, W.; Jean Antonie Piccolo, A.; García Torres, M.; Leccia, S.; Hidalgo, S. L.; Lecoeur Taibi, I.; Kontizas, M.; David, P.; Noval, L.; Hladczuk, N.; Kruszynska, K.; Raiteri, C. M.; Krone Martins, A.; Barache, C.; Brugaletta, E.; Korn, A. J.; Licata, E.; Solitro, F.; Bombrun, A.; Brucciarelli, B.; Aguado, J. J.; Martín Polo, L.; Bailer Jones, C. A. L.; Masip, A.; Riva, A.; Marshall, D. J.; Mazeh, T.; Osborne, Paul; Burlacu, A.; Rowell, N.; De Teodoro, P.; Hauser, M.; Dapergolas, A.; Racero, E.; Montegriffo, P.; Marinoni, S.; Messina, S.; Eyer, L.; Carlucci, T.; Pauwels, T.; Barros, M.; Accart, S.; Michalik, D.; Zucker, S.; De March, R.; Dolding, C.; Lorca, A.; Blanco Cuaresma, S.; Palaversa, L.; De Bruijne, J. H. J.; Panahi, A.; Robichon, N.; Cancelliere, R.; Penttilä, A.; Sciacca, E.; Pagano, I.; Plachy, E.; Siddiqui, H. I.; Poggio, E.; Eappachen, D.; Smart, R. L.; Fraile, E.; Marconi, M.; Bouquillon, S.; Dafonte, C.; Baker, S. G.; Altavilla, G.; Mints, A.; Ramos, P.; Orrù, G.; Re Fiorentin, P.; Plum, G.; Le Campion, J. F.; Pagani, C.; Prsa, A.; Vaillant, M.; Casamiquela, L.; Fienga, A.; Bellazzini, M.; Poretti, E.; Reylé, C.; Panuzzo, P.; Giacobbe, P.; Di Matteo, P.; Sahlmann, J.; Rybizki, J.; Salguero, E.; Weiler, M.; Sagristà Sellés, A.; Sanna, N.; Cowell, S.; Gutierrez Sánchez, R.; Zhao, H.; Panem, C.; Lanza, A. F.; Bastian, U.; Ségransan, D.; Sadowski, G.; Santoveña, R.; Marchal, O.; Huckle, H. E.; Crosta, M.; Figueras, F.; Sarasso, M.; Harrison, D. L.; Lebzelter, T.; Managau, S.; Castro Sampol, P.; Gerlach, E.; Steele, I. A.; Lanzafame, A. C.; Stephenson, C. A.; Wevers, T.; Szabados, L.; Frémat, Y.; Spoto, F.; Tauran, G.; Masana, E.; Teixeira, R.; Mann, R. G.; Nienartowicz, K.; Mastrobuono Battisti, A.; Royer, F.; Lambert, S.; Faigler, S.; Diener, C.; Walton, N. A.; Vanel, O.; Souami, D.; Viala, Y.; Taylor, M. B.; Ragaini, S.; Spagna, A.; Cheek, N.; Jonker, P. G.; Martín Fleitas, J. M.; García Gutierrez, A.; Thuillot, W.; Voutsinas, S.; Audard, M.; Molnár, L.; Livanou, E.; Solano, Enrique; Manteiga, Minia; Forderung der wissenschaftlichen Forschung (FWF); Belgian federal Science Policy Office (BELSPO); Hertha Firnberg Programme; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Comite Francais d'Evaluation de la Cooperation Universitaire et Scientifique avec le Bresil (COFECUB); National Natural Science Foundation of China (NSFC); China Scholarship Council (CSC); European Commission (EC); European Research Council (ERC); Agence Nationale de la Recherche (ANR); European Space Agency (ESA); Centre National D'Etudes Spatiales (CNES); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Narodowe Centrum Nauki (NCN); Fundacao para a Ciencia e a Tecnologia (FCT); Slovenian Research Agency; Agencia Estatal de Investigación (AEI); Xunta de Galicia; Universitat de Barcelona (UB); Generalitat de Catalunya; Swedish National Space Agency (SNSA); United Kingdom Science and Technology Facilities Council (STFC); Krone Martins, A. [0000-0002-2308-6623]; Seabroke, G. [0000-0003-4072-9536]; Chiavassa, A. [0000-0003-3891-7554]; Castro Ginard, A. [0000-0002-9419-3725]; McMillan, P. [0000-0002-8861-2620]; Siltala, L. [0000-0002-6938-794X]; Delise, J. B. [0000-0001-5844-9888]; Aerts, C. [0000-0003-1822-7126]; Fedorets, G. [0000-0002-8418-4809]; Centro de Excelencia Científica Severo Ochoa, Instituto de Ciencias del Cosmos de la Universidad de Barcelona, SEV2015-0493; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2014-0369Context. This work is part of the Gaia Data Processing and Analysis Consortium papers published with the Gaia Early Data Release 3 (EDR3). It is one of the demonstration papers aiming to highlight the improvements and quality of the newly published data by applying them to a scientific case. Aims. We use the Gaia EDR3 data to study the structure and kinematics of the Magellanic Clouds. The large distance to the Clouds is a challenge for the Gaia astrometry. The Clouds lie at the very limits of the usability of the Gaia data, which makes the Clouds an excellent case study for evaluating the quality and properties of the Gaia data. Methods. The basis of our work are two samples selected to provide a representation as clean as possible of the stars of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). The selection used criteria based on position, parallax, and proper motions to remove foreground contamination from the Milky Way, and allowed the separation of the stars of both Clouds. From these two samples we defined a series of subsamples based on cuts in the colour-magnitude diagram; these subsamples were used to select stars in a common evolutionary phase and can also be used as approximate proxies of a selection by age. Results. We compared the Gaia Data Release 2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insightsinto features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones.Publicación Acceso Abierto Gaia Early Data Release 3 The Galactic anticentre(EDP Sciences, 2021-04-28) Antoja, T.; McMillan, P. J.; Kordopatis, G.; Ramos, P.; Helmi, A.; Balbinot, E.; Cantat Gaudin, T.; Chemin, L.; Figueras, F.; Jordi, C.; Khanna, S.; Riclet, F.; Seabroke, G. M.; De Ridder, J.; Lammers, U.; Boch, T.; Hauser, M.; Del Pozo, E.; Fedorets, G.; De Bruijne, J. H. J.; Tanga, P.; Rybicki, K. A.; Samaras, N.; Marchant, J. M.; Klioner, S. A.; Jordan, S.; Luri, X.; Mignard, F.; Teyssier, D.; Bellas Velidis, I.; Randich, S.; Tauron, C.; Sánchez Giménez, V.; Masip, A.; Cropper, M.; Garofalo, A.; Harrison, D. L.; Riello, M.; Drimmel, R.; Giacobbe, P.; Muinonen, K.; Franke, F.; Sozzetti, A.; De Angeli, F.; Prsa, A.; Segovia, J. C.; Palaversa, L.; Frémat, Y.; Santoveña, R.; Mulone, A. F.; Guiraud, J.; Cioni, M. R. L.; Masana, E.; Butkevich, A. G.; Mowlavi, N.; Nicolas, C.; Fraile, E.; García Torres, M.; Giuffrida, G.; Hladczuk, N.; Van Reeven, W.; Smith, M.; Brouillet, N.; Clementini, G.; Walton, N. A.; Casamiquela, L.; Gosset, E.; Guerrier, A.; Fabrizio, M.; Anderson, R. I.; Managau, S.; Krone Martins, A.; Fouesneau, M.; Faigler, S.; Busso, G.; Anglada Varela, E.; Livanou, E.; Delchambre, L.; Fouron, C.; Damerdji, Y.; Van Leeuwen, F.; Chaoul, L.; Caffau, E.; Fernández Hernández, J.; Audard, M.; Abreu Aramburu, A.; Licarta, E.; Haztdimitriou, D.; Gai, M.; Haigron, R.; Arenou, F.; Racero, E.; Halbwachs, J. L.; Poretti, E.; Heiter, U.; Hernández, J.; Barache, C.; Diener, C.; Baines, D.; Janßen, Katja; Leclerc, N.; Murphy, C. P.; Gerlach, E.; Lanzafame, A. C.; Löffler, W.; Martín Fleitas, J. M.; Martín Polo, L.; Balog, Z.; Portell, J.; Lobel, A.; Lorca, A.; De Teodoro, P.; Osborne, Paul; Pancino, E.; Barros, M.; Recio Blanco, A.; Richards, P. J.; Siopis, C.; Sahlmann, J.; Sarro, L. M.; Lasne, Y.; Blanco Cuaresma, S.; Dafonte, C.; Davidson, M.; Marshall, D. J.; Van Leeuwen, M.; Brown, A. G. A.; Messina, S.; Accart, S.; Marocco, F.; Brugaletta, E.; Steele, I. A.; Eyer, L.; Andrae, R.; Siebert, A.; Ajaj, M.; Kervella, P.; Álvarez, M. A.; Álvarez Cid Fuentes, J.; Alves, J.; Kruszynska, K.; Molina, D.; Morris, D.; Pagani, C.; De March, R.; Charlot, P.; Rimoldini, L.; González Santamaría, I.; Hutton, A.; Huckle, H. E.; Bucciarelli, B.; Aguado, J. J.; Bassilana, J. L.; Eappachen, D.; Robichon, N.; Castellani, M.; Hodgkin, S. T.; Bernet, M.; Enke, H.; Riva, A.; Bouquillon, S.; Mastrobuono Battisti, A.; Bombrun, A.; Ulla, A.; Juaristi Campillo, J.; Bagaglia, A.; Bramante, L.; Regibo, S.; Michalik, D.; Bellazzini, M.; Esquej, P.; Burlacu, A.; Robin, A. C.; Bakker, J.; Buzzi, R.; Zurbach, C.; Cancelliere, R.; Cánovas, H.; Mann, R. G.; Rambaux, N.; Carnerero, M. I.; Montegriffo, P.; Cooper, W. J.; Bastian, U.; Castro Ginard, A.; Castro Sampol, P.; Cowell, S.; Sagristà Sellés, A.; Barbato, D.; Bailer Jones, C. A. L.; Comoretto, G.; Panem, C.; Cornez, T.; Fabre, C.; Fienga, A.; Crosta, M.; Crowley, C.; Busonero, D.; De Laverny, P.; Pulone, L.; Gavras, P.; Lanza, A. F.; De Luise, F.; Sadowski, G.; Bossini, D.; Jevardat de Fombelle, G.; Delisle, J. B.; De Torres, A.; Salguero, E.; Garía Reinaldos, M.; Delgado, A.; Bartolomé, S.; Cellino, A.; Di Matteo, P.; Piersimoni, A. M.; Bressan, A.; Distefano, E.; Dolding, C.; Schultheis, M.; Siddiqui, H. I.; Spagna, A.; Romero Gómez, M.; Leccia, S.; Julbe, F.; Muñoz, D.; Evans, D. W.; Palicio, P. A.; González Vidal, J. J.; Fragkoudi, F.; Marrese, P. M.; Messineo, R.; Jasniewicz, G.; Carballo, R.; García Gutierrez, A.; Marconi, M.; Jean Antonie Piccolo, A.; Jansen, F.; Korn, A. J.; De Souza, R.; Peñalosa Esteller, X.; Gilmore, G.; Girona, S.; Marcos Santos, M. M. S.; Guerra, R.; Garabato, D.; Sanna, V.; Granvik, M.; Dapergolas, A.; Guy, L. P.; Destroffer, D.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Marinoni, S.; Hobbs, D.; Fabricius, C.; Kontizas, M.; Segol, M.; Jonker, P. G.; Rybizki, J.; Sordo, R.; Fernique, P.; Roegiers, T.; Kochoska, A.; Pauwels, T.; Molinero, R.; Kostrzewa Rutkowska, Z.; Massari, D.; Lambert, S.; Gutiérrez Sánchez, R.; Lebreton, Y.; Berthier, J.; Molnár, L.; Muraveva, T.; Lebzelter, T.; Roux, W.; Geyer, R.; Carrasco, J. M.; Liao, S.; Gracia Abril, G.; Souami, D.; Lister, T. A.; Panahi, A.; Bianchi, L.; Madrero Pardo, P.; Unger, N.; Gómez, A.; Burgess, P. W.; Benson, K.; Carry, B.; Galluccio, L.; Holl, B.; Raiteri, C. M.; Penttilä, A.; Siltala, L.; Marchal, O.; Taris, F.; Salgado, J.; Chiavassa, A.; Vallenari, A.; Soubiran, C.; Lindstrom, H. E. P.; Mints, A.; Rohrbasser, L.; Altavilla, G.; Sartoretti, P.; Plum, G.; Lecoeur Taibi, I.; Morbidelli, R.; Morel, T.; Rowell, N.; Aerts, C.; Ordénovic, C.; Altmann, M.; Mazeh, T.; García Lario, P.; Noval, L.; Biermann, M.; Orrù, G.; Osinde, J.; Royer, F.; Pagano, I.; Abbas, U.; Plachy, E.; Blomme, R.; Pawlak, M.; David, P.; Balaguer Núñez, L.; David, M.; Pineau, F. X.; Crifo, F.; Sciacca, E.; Poggio, E.; Pourbaix, D.; Pojoulet, E.; Musella, I.; Ragaini, S.; Baudesson Stella, A.; Lattanzi, M. G.; Rainer, M.; Baker, S. G.; Mor, R.; Holland, G.; Re Fiorentin, P.; Millar, N. R.; Dell´Oro, A.; Ripepi, V.; Moitinho, A.; Rixon, G.; Hambly, N. C.; Robin, C.; Roelens, M.; Bauchet, N.; Bertone, S.; Breedt, E.; Carlucci, T.; Ducourant, C.; Katz, D.; Creevey, O. L.; Mora, A.; Slezak, E.; Karbevska, L.; Castañeda, J.; Tauran, G.; Creylé, C.; Sarasso, M.; Nienartowicz, K.; Diakite, S.; Prusti, T.; Ramos Lerate, M.; Ségransan, D.; Semeux, D.; Pailler, F.; Delgado, H. E.; Solitro, F.; Barstow, M. A.; Smart, R. L.; Babusiaux, C.; Cheek, N.; Utrilla, E.; Souchay, J.; Panuzzo, P.; Spoto, F.; Del Peloso, E. F.; Vicente, D.; Becciani, U.; Teixeira, R.; Le Fustec, Y.; Le Campion, J. F.; Viala, Y.; González Núñez, J.; Weiler, M.; Zucker, S.; Thévenin, F.; Zwitter, T.; Solano, Enrique; Manteiga, Minia; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MINECO/ICTI2013-2016/MDM-2014-0369; Centrode Excelencia Científica Instituto de Ciencias del Cosmos Universidad de Barcelona, MINECO/ICTI2013-2016/SEV2015-0493; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); National Natural Science Foundation of China (NSFC); Estonian Ministry of Education and Research; Centre National D'Etudes Spatiales (CNES); Agence Nationale de la Recherche (ANR); Centre National de la Recherche Scientifique (CNRS); European Commission (EC); European Research Council (ERC); Institut des Sciences de l'Univers (INSU); Institut National Polytechnique (INP); Institut National de Physique nucleaire et de Physique des Particules (IN2P3); Deutsches Zentrum für Luft- und Raumfahrt (DLR); Hungarian Academy of Sciences; Hungarian National Research, Development, and Innovation Office (NKFIH); Science Foundation Ireland (SFI); Israel Science Foundation (ISF); Agenzia Spaziale Italiana (ASI); Italian Istituto Nazionale di Astrofisica (INAF); Netherlands Organisation for Scientific Research (NWO); Polish National Science Centre; Ministry of Science and Higher Education (MNiSW); Fundacao para a Ciencia e a Tecnologia (FCT); Slovenian Research Agency; Xunta de Galicia; Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; United Kingdom Science and Technology Facilities Council (STFC); United Kingdom Space Agency (UKSA); Krone Martins, A. [0000-0002-2308-6623]; McMillan, P. [0000-0002-8861-2620]; Carrasco Martínez, J. P. [0000-0002-3029-5853]; Sozzetti, A. [0000-0002-7504-365X]; Centros de Excelencia Severo Ochoa, BARCELONA SUPERCOMPUTING CENTER (BSC), SEV2015-0493Aims. We aim to demonstrate the scientific potential of the Gaia Early Data Release 3 (EDR3) for the study of different aspects of the Milky Way structure and evolution and we provide, at the same time, a description of several practical aspects of the data and examples of their usage. Methods. We used astrometric positions, proper motions, parallaxes, and photometry from EDR3 to select different populations and components and to calculate the distances and velocities in the direction of the anticentre. In this direction, the Gaia astrometric data alone enable the calculation of the vertical and azimuthal velocities; also, the extinction is relatively low compared to other directions in the Galactic plane. We then explore the disturbances of the current disc, the spatial and kinematical distributions of early accreted versus in situ stars, the structures in the outer parts of the disc, and the orbits of open clusters Berkeley 29 and Saurer 1. Results. With the improved astrometry and photometry of EDR3, we find that: (i) the dynamics of the Galactic disc are very complex with oscillations in the median rotation and vertical velocities as a function of radius, vertical asymmetries, and new correlations, including a bimodality with disc stars with large angular momentum moving vertically upwards from below the plane, and disc stars with slightly lower angular momentum moving preferentially downwards; (ii) we resolve the kinematic substructure (diagonal ridges) in the outer parts of the disc for the first time; (iii) the red sequence that has been associated with the proto-Galactic disc that was present at the time of the merger with Gaia-Enceladus-Sausage is currently radially concentrated up to around 14 kpc, while the blue sequence that has been associated with debris of the satellite extends beyond that; (iv) there are density structures in the outer disc, both above and below the plane, most probably related to Monoceros, the Anticentre Stream, and TriAnd, for which the Gaia data allow an exhaustive selection of candidate member stars and dynamical study; and (v) the open clusters Berkeley 29 and Saurer 1, despite being located at large distances from the Galactic centre, are on nearly circular disc-like orbits. Conclusions. Even with our simple preliminary exploration of the Gaia EDR3, we demonstrate how, once again, these data from the European Space Agency are crucial for our understanding of the different pieces of our Galaxy and their connection to its global structure and history.Publicación Acceso Abierto HADES RV Programme with HARPS-N at TNG XIII. A sub-Neptune around the M dwarf GJ 720 A(EDP Sciences, 2021-05-31) González Álvarez, E.; Petralia, A.; Micela, G.; Maldonado, J.; Affer, L.; Maggio, A.; Covino, E.; Damasso, M.; Lanza, A. F.; Perger, M.; Pinamonti, M.; Poretti, E.; Scandariato, G.; Sozzetti, A.; Bignamini, A.; Giacobbe, P.; Leto, G.; Pagano, I.; Zanmar Sánchez, R.; Rebolo, R.; Ribas, I.; Suárez Mascareño, A.; Toledo Padrón, B.; González Hernández, Carmen; National Science Foundation (USA NSF); Agenzia Spaziale Italiana (ASI); Generalitat de Catalunya; Fundación Caixa; Agencia Estatal de Investigación (AEI); González Álvarez, E. [0000-0002-4820-2053]; Petralia, A. [0000-0002-9882-1020]; Maldonado, J. [0000-0002-2218-5689]; Affer, L. [0000-0001-5600-3778]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The high number of super-Earth and Earth-like planets in the habitable zone detected around M-dwarf stars in recent years has revealed these stellar objects to be the key to planetary radial velocity (RV) searches. Aims. Using the HARPS-N spectrograph within The HArps-n red Dwarf Exoplanet Survey (HADES) we have reached the precision needed to detect small planets with a few Earth masses using the spectroscopic radial velocity technique. HADES is mainly focused on the M-dwarf population of the northern hemisphere. Methods. We obtained 138 HARPS-N RV measurements between 2013 May and 2020 September of GJ 720 A, classified as an M0.5 V star located at a distance of 15.56 pc. To characterize the stellar variability and to distinguish the periodic variation due to the Keplerian signals from those related to stellar activity, the HARPS-N spectroscopic activity indicators and the simultaneous photometric observations with the APACHE and EXORAP transit surveys were analyzed. We also took advantage of TESS, MEarth, and SuperWASP photometric surveys. The combined analysis of HARPS-N RVs and activity indicators let us address the nature of the periodic signals. The final model and the orbital planetary parameters were obtained by simultaneously fitting the stellar variability and the Keplerian signal using a Gaussian process regression and following a Bayesian criterion. Results. The HARPS-N RV periodic signals around 40 days and 100 days have counterparts at the same frequencies in HARPS-N activity indicators and photometric light curves. We thus attribute these periodicities to stellar activity; the first period is likely associated with the stellar rotation. GJ 720 A shows the most significant signal at 19.466 ± 0.005 days with no counterparts in any stellar activity indices. We hence ascribe this RV signal, having a semi-amplitude of 4.72 ± 0.27 m s−1, to the presence of a sub-Neptune mass planet. The planet GJ 720 Ab has a minimum mass of 13.64 ± 0.79 M⊕, it is in circular orbit at 0.119 ± 0.002 AU from its parent star, and lies inside the inner boundary of the habitable zone around its parent star.Publicación Acceso Abierto HADES RV programme with HARPS-N at TNG XIV. A candidate super-Earth orbiting the M-dwarf GJ 9689 with a period close to half the stellar rotation period(EDP Sciences, 2021-07-12) Maldonado, J.; Petralia, A.; Damasso, M.; Pinamonti, M.; Scandariato, G.; González Álvarez, E.; Affer, L.; Micela, G.; Lanza, A. F.; Leto, G.; Poretti, E.; Sozzetti, A.; Perger, M.; Giacobbe, P.; Zanmar Sánchez, R.; Maggio, A.; Rebolo, R.; Ribas, I.; Suárez Mascareño, A.; Toledo Padrón, B.; Bignamini, A.; Molinari, E.; Covino, E.; Claudi, R.; Desidera, S.; Herrero, E.; Morales, J. C.; Pagano, I.; Piotto, G.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; Maldonado, J. [0000-0002-2218-5689]; Petralia, A. [0000-0002-9882-1020]; Damasso, M. [0000-0001-9984-4278]; Pinamonti, M. [0000-0002-4445-1845]; Affer, L. [0000-0001-5600-3778]; Lanza, A. F. [0000-0001-5928-7251]; Leto, G. [0000-0002-0040-5011]; Poretti, E. [0000-0003-1200-0473]; Sozzetti, A. [0000-0002-7504-365X]; Perger, M. [0000-0001-7098-0372]; Zanmar Sánchez, R. [0000-0002-6997-0887]; Maggio, A. [0000-0001-5154-6108]; González Hernández, J. I. [0000-0002-0264-7356]; Ribas, I. [0000-0002-6689-0312]; Toledo Padrón, B. [0000-0002-8194-215X]; Bignamini, A. [0000-0002-5606-6354]; Molinari, E. [0000-0002-1742-7735]; Covino, E. [0000-0002-7579-2298]; Claudi, R. [0000-0001-7707-5105]; Desidera, S. [0000-0001-8613-2589]Context. It is now well-established that small, rocky planets are common around low-mass stars. However, the detection of such planets is challenged by the short-term activity of host stars. Aims. The HARPS-N red Dwarf Exoplanet Survey programme is a long-term project at the Telescopio Nazionale Galileo aimed at monitoring nearby, early-type, M dwarfs, using the HARPS-N spectrograph to search for small, rocky planets. Methods. A total of 174 HARPS-N spectroscopic observations of the M0.5V-type star GJ 9689 taken over the past seven years have been analysed. We combined these data with photometric measurements to disentangle signals related to the stellar activity of the star from possible Keplerian signals in the radial velocity data. We ran an MCMC analysis, applying Gaussian process regression techniques to model the signals present in the data. Results. We identify two periodic signals in the radial velocity time series, with periods of 18.27 and 39.31 d. The analysis of the activity indexes, photometric data, and wavelength dependency of the signals reveals that the 39.31 d signal corresponds to the stellar rotation period. On the other hand, the 18.27 d signal shows no relation to any activity proxy or the first harmonic of the rotation period. We, therefore, identify it as a genuine Keplerian signal. The best-fit model describing the newly found planet, GJ 9689 b, corresponds to an orbital period of Pb = 18.27 ± 0.01 d and a minimum mass of MP sini = 9.65 ± 1.41 M⊕.Publicación Acceso Abierto The GAPS Programme at TNG XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b(EDP Sciences, 2020-05-29) Carleo, I.; Malavolta, L.; Lanza, A. F.; Damasso, M.; Desidera, S.; Borsa, F.; Mallonn, M.; Pinamonti, M.; Gratton, R.; Alei, E.; Benatti, S.; Mancini, L.; Maldonado, J.; Biazzo, K.; Esposito, M.; Frustagli, G.; González Álvarez, E.; Micela, G.; Scandariato, G.; Sozzatti, A.; Affer, L.; Bignamini, A.; Bonomo, A. S.; Claudi, R.; Cosentino, R.; Covino, E.; Fiorenzano, A. F. M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Maggio, A.; Molinari, E.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Poretti, E.; Rainer, M.; Redfield, S.; Baffa, C.; Baruffolo, A.; Buschschacher, N.; Billoti, V.; Cecconi, M.; Falcini, G.; Fantinel, D.; Fini, L.; Galli, A.; Ghedina, A.; Ghinassi, F.; Giani, E.; Guerra, J.; Hernández Díaz, M.; Hernández, N.; Luzzolino, M.; Lodi, M.; Oliva, E.; Origlia, L.; Pérez Ventura, H.; Puglisi, A.; Riverol, C.; Riverol, L.; San Juan, J.; Sanna, N.; Scuderi, S.; Seemann, U.; Sozzi, M.; Tozzi, P.; González Hernández, Carmen; Jimeno González, María; Agenzia Spaziale Italiana (ASI); European Commission (EC); Claudi, R. [0000-0001-7707-5105]; Leto, G. [0000-0002-0040-5011]; Piotto, G. [0000-0002-9937-6387]; Bonomo, A. S. [0000-0002-6177-198X]; Sozzetti, A. [0000-0002-7504-365X]; Biazzo, K. [0000-0002-1892-2180]; Ghedina, A. [0000-0003-4702-5152]; Damasso, M. [0000-0001-9984-4278]; Cosentino, R. [0000-0003-1784-1431]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.Publicación Acceso Abierto The GAPS programme at TNG XXII. The GIARPS view of the extended helium atmosphere of HD 189733 b accounting for stellar activity(EDP Sciences, 2020-07-07) Guilluy, G.; Andretta, V.; Borsa, F.; Giacobbe, P.; Sozzetti, A.; Covino, E.; Bourrier, V.; Fossati, L.; Bonomo, A. S.; Esposito, M.; Giampapa, M. S.; Harutyunyan, A.; Rainer, M.; Brogi, M.; Bruno, G.; Claudi, R.; Frustagli, G.; Lanza, A. F.; Mancini, L.; Pino, L.; Poretti, E.; Scandariato, G.; Affer, L.; Baffa, C.; Baruffolo, A.; Benatti, S.; Biazzo, K.; Bignamini, A.; Boschin, W.; Carleo, I.; Cecconi, M.; Cosentino, R.; Damasso, M.; Desidera, S.; Falcini, G.; Martínez Fiorenzano, A. F.; Ghedina, A.; González Álvarez, E.; Guerra, J.; Hernández, N.; Leto, G.; Maggio, A.; Malavolta, L.; Maldonado, J.; Micela, G.; Molinari, E.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Reiners, A.; Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Claudi, R. [orcid.org/0000-0001-7707-5105]; Leto, G. [orcid.org/0000-0002-0040-5011]; Ghedina, A. [orcid.org/0000-0003-4702-5152]; Pino, L. [orcid.org/0000-0002-1321-8856]; Damaso, M. [orcid.org/0000-0001-9984-4278]; Cosentino, R. [orcid.org/0000-0003-1784-1431]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Exoplanets orbiting very close to their parent star are strongly irradiated. This can lead the upper atmospheric layers to expand and evaporate into space. The metastable helium (He I) triplet at 1083.3 nm has recently been shown to be a powerful diagnostic to probe extended and escaping exoplanetary atmospheres. Aims. We perform high-resolution transmission spectroscopy of the transiting hot Jupiter HD 189733 b with the GIARPS (GIANO-B + HARPS-N) observing mode of the Telescopio Nazionale Galileo, taking advantage of the simultaneous optical+near infrared spectral coverage to detect He I in the planet’s extended atmosphere and to gauge the impact of stellar magnetic activity on the planetary absorption signal. Methods. Observations were performed during five transit events of HD 189733 b. By comparison of the in-transit and out-of-transit GIANO-B observations, we computed high-resolution transmission spectra. We then used them to perform equivalent width measurements and carry out light-curves analyses in order to consistently gauge the excess in-transit absorption in correspondence with the He I triplet. Results. We spectrally resolve the He I triplet and detect an absorption signal during all five transits. The mean in-transit absorption depth amounts to 0.75 ± 0.03% (25σ) in the core of the strongest helium triplet component. We detect night-to-night variations in the He I absorption signal likely due to the transit events occurring in the presence of stellar surface inhomogeneities. We evaluate the impact of stellar-activity pseudo-signals on the true planetary absorption using a comparative analysis of the He I 1083.3 nm (in the near-infrared) and the Hα (in the visible) lines. Using a 3D atmospheric code, we interpret the time series of the He I absorption lines in the three nights not affected by stellar contamination, which exhibit a mean in-transit absorption depth of 0.77 ± 0.04% (19σ) in full agreement with the one derived from the full dataset. In agreement with previous results, our simulations suggest that the helium layers only fill part of the Roche lobe. Observations can be explained with a thermosphere heated to ~12 000 K, expanding up to ~1.2 planetary radii, and losing ~1 g s−1 of metastable helium. Conclusions. Our results reinforce the importance of simultaneous optical plus near infrared monitoring when performing high-resolution transmission spectroscopy of the extended and escaping atmospheres of hot planets in the presence of stellar activity.