Examinando por Autor "Dypvik, H."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars(Mary Ann Liebert Publishers, 2020-03-02) Veneranda, M.; López Reyes, G.; Manrique, J. A.; Medina García, J.; Ruiz Galende, P.; Torre Fdez, I.; Castro, K.; Lantz, C.; Poulet, F.; Dypvik, H.; Werner, S. C.; Rull, F.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); European Research Council (ERC); López Reyes, G. [0000-0003-1005-1760]; Ruiz, P. [0000-0003-0181-3532]; Manrique, J. A. [0000-0002-2053-2819]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.Publicación Restringido Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team(Springer Link, 2020-11-03) Stack, K. M.; Williams, N. R.; Calef, F. J.; Sun, V. Z.; Williford, K. H.; Farley, K. A.; Eide, S.; Flannery, D.; Hughes, C.; Jacob, S. R.; Kah, L. C.; Meyen, F.; Molina, A.; Quantin Nataf, C.; Rice, M.; Russel, P.; Scheller, E.; Seeger, C. H.; Abbey, W. J.; Adler, J. B.; Amudsen, H.; Anderson, R. B.; Ángel, S. M.; Arana, G.; Atkins, J.; Barrington, M.; Berger, T.; Borden, R.; Boring, B.; Brown, A.; Carrier, B. L.; Conrad, Pamela G.; Dypvik, H.; Fagents, S. A.; Gallegos, Z. E.; Garczynski, B.; Golder, K.; Gómez, F.; Goreva, Y.; Gupta, S.; Hamran, S. E.; Hicks, T.; Hinterman, E. D.; Horgan, B. N.; Hurowitz, J.; Johnson, J. R.; Lasue, J.; Kronyak, R. E.; Liu, Y.; Madariaga, J. M.; Mangold, N.; McClean, J.; Miklusicak, N.; Nunes, D.; Rojas, C.; Runyon, K.; Schmitz, N.; Scudder, N.; Shaver, E.; SooHoo, J.; Spaulding, R.; Stanish, E.; Tamppari, L. K.; Tice, M. M.; Turenne, N.; Willis, P. A.; Aileen Yingst, R.; European Research Council (ERC); National Aeronautics and Space Administration (NASA); Molina, A. [0000-0002-5038-2022]; Hughes, C. [0000-0002-7061-1443]; Jacob, S. [0000-0001-9950-1486]; Arana, Gorka [0000-0001-7854-855X]; Sun, V. Z. [0000-0003-1480-7369]; Stack, K. [0000-0003-3444-6695]; Williford, K. [0000-0003-0633-408X]; Flannery, D. [0000-0001-8982-496X]; Gupta, S. [0000-0001-6415-1332]; Williams, N. [0000-0003-0602-484X]; Unidad de Excelencia Científica Centro de Astrobiología María de Maeztu del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars 2020 Perseverance rover landing site is located within Jezero crater, a similar to 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.