Examinando por Autor "Cockell, C. S."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Impact of Simulated Martian Conditions on (Facultatively) Anaerobic Bacterial Strains from Different Mars Analogue Sites.(Multidisciplinary Digital Publishing Institute (MDPI), 2020-01-15) Beblo Vranesevic, K.; Bohmeier, M.; Schleumer, S.; Rabbow, E.; Perras, A. K.; Moissi Eichinger, C.; Schwendner, P.; Cockell, C. S.; Vannier, P.; Marteinsson, V. T.; Monaghan, E. P.; Riedo, A.; Ehrenfreund, P.; García Descalzo, L.; Gómez, F.; Malki, M.; Amils, R.; Gaboyer, F.; Hickman-Lewis, K.; Westall, F.; Cabezas, P.; Walter, N.; Rettberg, P.; Rettberg, P. [0000-0003-4439-2395]; García Descalzo, L. [0000-0002-0083-6786]; Cabezas, P. [0000-0002-6336-4093]; Marteinsson, V. [0000-0001-8340-821X]; Gómez, F. [0000-0001-9977-7060]Five bacterial (facultatively) anaerobic strains, namely Buttiauxella sp. MASE-IM-9, Clostridium sp. MASE-IM-4, Halanaerobium sp. MASE-BB-1, Trichococcus sp. MASE-IM-5, and Yersinia intermedia MASE-LG-1 isolated from different extreme natural environments were subjected to Mars relevant environmental stress factors in the laboratory under controlled conditions. These stress factors encompassed low water activity, oxidizing compounds, and ionizing radiation. Stress tests were performed under permanently anoxic conditions. The survival rate after addition of sodium perchlorate (Na-perchlorate) was found to be species-specific. The inter-comparison of the five microorganisms revealed that Clostridium sp. MASE-IM-4 was the most sensitive strain (D-10-value (15 min, NaClO4) = 0.6 M). The most tolerant microorganism was Trichococcus sp. MASE-IM-5 with a calculated D-10-value (15 min, NaClO4) of 1.9 M. Cultivation in the presence of Na-perchlorate in Martian relevant concentrations up to 1 wt% led to the observation of chains of cells in all strains. Exposure to Na-perchlorate led to a lowering of the survival rate after desiccation. Consecutive exposure to desiccating conditions and ionizing radiation led to additive effects. Moreover, in a desiccated state, an enhanced radiation tolerance could be observed for the strains Clostridium sp. MASE-IM-4 and Trichococcus sp. MASE-IM-5. These data show that anaerobic micro-organisms from Mars analogue environments can resist a variety of Martian-simulated stresses either individually or in combination. However, responses were species-specific and some Mars-simulated extremes killed certain organisms. Thus, although Martian stresses would be expected to act differentially on microorganisms, none of the expected extremes tested here and found on Mars prevent the growth of anaerobic microorganisms.Publicación Acceso Abierto Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part I (Rover development).(Cambridge University Press, 2020-04-05) Mathanlal, Thasshwin; Bhardwaj, A.; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Cockell, C. S.; Edwards, T.; Martín Torres, J. [0000-0001-6479-2236]; Zorzano, M. P. [0000-0002-4492-9650]; Bhardwaj, A. [0000-0002-2502-6384]; Vakkada Ramachandran, A. [0000-0003-0499-6370]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Autonomous exploration requires the use of movable platforms that carry a payload of instruments with a certain level of autonomy and communication with the operators. This is particularly challenging in subsurface environments, which may be more dangerous for human access and where communication with the surface is limited. Subsurface robotic exploration, which has been to date very limited, is interesting not only for science but also for cost-effective industrial exploitation of resources and safety assessments in mines. Furthermore, it has a direct application to exploration of extra-terrestrial subsurface environments of astrobiological and geological significance such as caves, lava tubes, impact or volcanic craters and subglacial conduits, for deriving in-situ mineralogical resources and establishing preliminary settlements. However, the technological solutions are generally tailor-made and are therefore considered as costly, fragile and environment-specific, further hindering their extensive and effective applications. To demonstrate the advantages of rover exploration for a broad-community, we have developed KORE (KOmpact Rover for Exploration); a low-cost, re-usable, rover multi-purpose platform. The rover platform has been developed as a technological demonstration for extra-terrestrial subsurface exploration and terrestrial mining operations pertaining to geomorphological mapping, environmental monitoring, gas leak detections and search and rescue operations in case of an accident. The present paper, the first part of a series of two, focuses on describing the development of a robust rover platform to perform dedicated geomorphological, astrobiological and mining tasks. KORE was further tested in the Mine Analogue Research 6 (MINAR6) campaign during September 2018 in the Boulby mine (UK), the second deepest potash mine in Europe at a subsurface depth of 1.1 km, the results of which will be presented in the second paper of this series. KORE is a large, semi-autonomous rover weighing 160 kg with L x W x H dimensions 1.2 m x 0.8 m x 1 m and a payload carrying capacity of 100 kg using 800 W traction power that can power to a maximum speed of 8.4 km h(-1). The rover can be easily dismantled in three parts facilitating its transportation to any chosen site of exploration. Presently, the main scientific payloads on KORE are: (1) a three-dimensional mapping camera, (2) a methane detection system, (3) an environmental station capable of monitoring temperature, relative humidity, pressure and gases such as NO2, SO2, H2S, formaldehyde, CO, CO2, O-3, O(2,)volatile organic compounds and particulates and (4) a robotic arm. Moreover, the design of the rover allows for integration of more sensors as per the scientific requirements in future expeditions. At the MINAR6 campaign, the technical readiness of KORE was demonstrated during 6 days of scientific research in the mine, with a total of 22 h of operation.Publicación Acceso Abierto Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion)(Cambridge University Press, 2021-01-07) Mathanlal, Thasshwin; Bhardwaj, A.; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Cockell, C. S.; Zorzano, M. P. [0000-0002-4492-9650]; Bhardwaj, A. [0000-0002-2502-6384]; Martín Torres, J. [0000-0001-6479-2236]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Geomorphological studies of the hidden and protected subsurface environments are crucial to obtain a greater insight into the evolution of planetary landforms, hydrology, climate, geology and mineralogy. From an astrobiological point of view subsurface environments are of interest for their potential habitability as they are local environments that are partially or fully shielded from the high levels of space and solar radiation. Furthermore, in the case of Mars, there is an increasing interest in searching for the presence of past or extant life in its subsurface. These applications make it mandatory to investigate equipment and instrumentation that allow for the study of subsurface geomorphology, as well as organic chemical biomarkers, such as biomolecules, carbon, nitrogen and sulphur isotopes, and other biologically significant minerals and gases. Mines on Earth can be used as analogues to investigate the geomorphology of Martian subsurface environments and perform astrobiology studies. With that goal, we have developed a low-cost, robust, remotely operable subsurface rover called KORE (KOmpact Rover for Exploration). This work illustrates the studies of a terrestrial analogue for the exploration of Mars using KORE during the Mine Analogue Research 6 (MINAR 6) campaign with the low-cost 3D mapping technology InXSpace 3D (In situ 3D mapping tool eXploration of space 3D). InXSpace 3D utilizes an RGB-D camera that captures depth information in addition to the RGB data of an image, operating based on the structured light principle capable of providing depth information in mm scale resolution at sub 3 m mapping range. InXSpace 3D is used to capture point clouds of natural and artificial features, thereby obtaining information about geologically relevant structures and also to incorporate them in earth mining safety. We tested two of the dense simultaneous localization and mapping (SLAM) algorithms: Kintinuous and Real-Time Appearance-Based Mapping (RTAB-Map) to check the performance of InXSpace 3D in a dark mine environment. Also, the air accumulation of volatiles such as methane and formaldehyde due to thermogenic and mining process was measured with the environmental station payload on the rover platform, which caters to both astrobiological significance and mine safety. The main conclusions of this work are: (1) a comparison made between the RTAB-Map algorithm and Kintinuous algorithm showed the superiority of Kintinuous algorithm in providing better 3D reconstruction; although RTAB-Map algorithm captured more points than the Kintinuous algorithm in the dark mine environment; (2) a comparison of point cloud images captured with and without lighting conditions had a negligible effect on the surface density of the point clouds; (3) close-range imaging of the polygonal features occurring on the halite walls using InXSpace 3D provided mm-scale resolution to enable further characterization; (4) heuristic algorithms to quickly post-process the 3D point cloud data provided encouraging results for preliminary analyses; (5) we successfully demonstrated the application of KORE to mine safety; and (6) the multi-sensors platform on KORE successfully monitored the accumulated volatiles in the mine atmosphere during its operation. The findings obtained during this KORE campaign could be incorporated in designing and planning future subsurface rover explorations to potential planetary bodies such as Mars with synergistic applications to subsurface environments in mines on Earth.