Examinando por Autor "Cede, A."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks(European Geoscience Union (EGU), 2021-01-22) Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J. C.; Eskes, H. J.; Eichmann, K. U.; Fjaeraa, A. M.; Granville, J.; Niemeijer, S.; Cede, A.; Tiefengraber, M.; Hendrick, F.; Pazmiño, A.; Bais, A.; Bazureau, A.; Folkert Boersma, K.; Bognar, K.; Dehn, A.; Donner, S.; Elokhov, A.; Gebetsberger, M.; Goutail, F.; Grutter de la Mora, M.; Gruzdev, A.; Gratsea, M.; Hansen, G. H.; Irie, H.; Jepsen, N.; Kanaya, Y.; Karagkiozidis, D.; Kivi, R.; Kreher, K.; Levelt, P. F.; Liu, C.; Müller, M.; Piters, Ankie; Pommereau, J. P.; Portafaix, T.; Prados Roman, C.; Puentedura, O.; Querel, R.; Remmers, J.; Richter, A.; Rimmer, J.; Rivera Cárdenas, C.; Saavedra de Miguel, L.; Sinyakov, V. P.; Stremme, W.; Strong, K.; Van Roozendael, M.; Pepijn Veefkind, J.; Wagner, T.; Wittrock, F.; Yela González, M.; Zehner, C.; Navarro-Comas, Mónica; Navarro-Comas, Mónica; European Space Agency (ESA); French Institut National des Sciences de l'Univers (INSU); Centre National D'Etudes Spatiales (CNES); Centre National de la Recherche Scientifique (CNRS); Institut polaire français Paul Emile Victor (IPEV); Belgian Science Policy Office (BELSPO); Verhoelst, T. [0000-0003-0163-9984]; Compernolle, S. [0000-0003-0872-0961]; Pinardi, G. [0000-0001-5428-916X]; Eskes, H. [0000-0002-8743-4455]; Bais, A. [0000-0003-3899-2001]; Folkert Boersma, K. [0000-0002-4591-7635]; Bognar, K. [0000-0003-4619-2020]; Donner, S. [0000-0001-8868-167X]; Elokhov, A. [0000-0003-4725-9186]; Grutter de la Mora, M. [0000-0001-9800-5878]; Gruzdev, A. [0000-0003-3224-1012]; Karagkiozidis, D. [0000-0002-3595-0538]; Kivi, R. [0000-0001-8828-2759]; Liu, C. [0000-0002-3759-9219]; Müller, M. [0000-0001-5284-5425]; Pommereau, J. P. [0000-0002-8285-9526]; Prados Roman, C. [0000-0001-8332-0226]; Puentedura, O. [0000-0002-4286-1867]; Querel, R. [0000-0001-8792-2486]; Richter, A. [0000-0003-3339-212X]; Rivera Cárdenas, C. [0000-0002-8617-265X]; Stremme, W. [0000-0003-0791-3833]; Strong, K. [0000-0001-9947-1053]; Pepijn Veefkind, J. [0000-0003-0336-6406]This paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOspheric Monitoring Instrument (TROPOMI) on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite. Tropospheric, stratospheric, and total NO2 column data from S5P are compared to correlative measurements collected from, respectively, 19 Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), 26 Network for the Detection of Atmospheric Composition Change (NDACC) Zenith-Scattered-Light DOAS (ZSL-DOAS), and 25 Pandonia Global Network (PGN)/Pandora instruments distributed globally. The validation methodology gives special care to minimizing mismatch errors due to imperfect spatio-temporal co-location of the satellite and correlative data, e.g. by using tailored observation operators to account for differences in smoothing and in sampling of atmospheric structures and variability and photochemical modelling to reduce diurnal cycle effects. Compared to the ground-based measurements, S5P data show, on average, (i) a negative bias for the tropospheric column data, of typically −23 % to −37 % in clean to slightly polluted conditions but reaching values as high as −51 % over highly polluted areas; (ii) a slight negative median difference for the stratospheric column data, of about −0.2 Pmolec cm−2, i.e. approx. −2 % in summer to −15 % in winter; and (iii) a bias ranging from zero to −50 % for the total column data, found to depend on the amplitude of the total NO2 column, with small to slightly positive bias values for columns below 6 Pmolec cm−2 and negative values above. The dispersion between S5P and correlative measurements contains mostly random components, which remain within mission requirements for the stratospheric column data (0.5 Pmolec cm−2) but exceed those for the tropospheric column data (0.7 Pmolec cm−2). While a part of the biases and dispersion may be due to representativeness differences such as different area averaging and measurement times, it is known that errors in the S5P tropospheric columns exist due to shortcomings in the (horizontally coarse) a priori profile representation in the TM5-MP chemical transport model used in the S5P retrieval and, to a lesser extent, to the treatment of cloud effects and aerosols. Although considerable differences (up to 2 Pmolec cm−2 and more) are observed at single ground-pixel level, the near-real-time (NRTI) and offline (OFFL) versions of the S5P NO2 operational data processor provide similar NO2 column values and validation results when globally averaged, with the NRTI values being on average 0.79 % larger than the OFFL values.Publicación Acceso Abierto Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign(European Geoscience Union (EGU), 2021-01-04) Tirpitz, J. L.; Frieb, U.; Hendrick, F.; Alberti, C.; Allaart, M.; Apituley, A.; Bais, A.; Beirle, S.; Berkhout, S.; Bognar, K.; Bösch, T.; Bruchkouski, I.; Cede, A.; Lok Chan, K.; Den Hoed, M.; Donner, S.; Drosoglou, T.; Fayt, C.; Friedrich, M. M.; Frumau, A.; Gast, L.; Gielen, C.; Gómez Martín, L.; Hao, N.; Hensen, A.; Henzing, B.; Hermans, C.; Jin, J.; Kreher, K.; Kuhn, J.; Lampel, J.; Li, A.; Liu, C.; Liu, H.; Ma, J.; Merlaud, A.; Peters, E.; Pinardi, G.; Piters, Ankie.; Platt, U.; Puentedura, O.; Richter, A.; Schmitt, S.; Spinei, E.; Stein Zweers, D.; Strong, K.; Swart, D.; Tack, F.; Tiefengraber, M.; Van der Hoff, R.; Van Roozendael, M.; Vlemmix, T.; Vonk, J.; Wagner, T.; Wang, Y.; Wang, Z.; Wenig, M.; Wiegner, M.; Wittrock, F.; Xie, P.; Xing, C.; Xu, J.; Yela González, M.; Zhang, C.; Zhao, X.; European Space Agency (ESA); European Commission (EC); Canadian Space Agency; National Natural Science Foundation of China (NSFC); Natural Sciences and Engineering Research Council of Canada; Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Frieß, U. [0000-0001-7176-7936]; Alberti, C. [0000-0002-1574-5393]; Apituley, A. [0000-0001-8821-6348]; Bais, A. [0000-0003-3899-2001]; Beirle, S. [0000-0002-7196-0901]; Berkhout, S. [0000-0001-5447-8868]; Bognar, K. [0000-0003-4619-2020]; Bösch, T. [0000-0003-4230-8129]; Donner, S. [0000-0001-8868-167X]; Frumau, A. [0000-0001-5940-0285]; Gómez Martín, L. [0000-0002-6655-7659]; Henzing, B. [0000-0001-6456-8189]; Lampel, J. [0000-0001-7370-9342]; Liu, C. [0000-0002-3759-9219]; Ma, J. [0000-0002-9510-5432]; Peters, E. [0000-0002-8380-3137]; Pinardi, G. [0000-0001-5428-916X]; Puentedura, O. [0000-0002-4286-1867]; Richter, A. [0000-0003-3339-212X]; Stein Zweers, D. [0000-0002-1180-5790]; Strong, K. [0000-0001-9947-1053]; Swart, D. [0000-0002-6128-337X]; Vlemmix, T. [0000-0003-2584-3402]; Wang, Y. [0000-0002-9828-9871]; Zhang, C. [0000-0003-2092-9135]The second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) took place in Cabauw (the Netherlands) in September 2016 with the aim of assessing the consistency of multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of tropospheric species (NO2, HCHO, O3, HONO, CHOCHO and O4). This was achieved through the coordinated operation of 36 spectrometers operated by 24 groups from all over the world, together with a wide range of supporting reference observations (in situ analysers, balloon sondes, lidars, long-path DOAS, direct-sun DOAS, Sun photometer and meteorological instruments). In the presented study, the retrieved CINDI-2 MAX-DOAS trace gas (NO2, HCHO) and aerosol vertical profiles of 15 participating groups using different inversion algorithms are compared and validated against the colocated supporting observations, with the focus on aerosol optical thicknesses (AOTs), trace gas vertical column densities (VCDs) and trace gas surface concentrations. The algorithms are based on three different techniques: six use the optimal estimation method, two use a parameterized approach and one algorithm relies on simplified radiative transport assumptions and analytical calculations. To assess the agreement among the inversion algorithms independent of inconsistencies in the trace gas slant column density acquisition, participants applied their inversion to a common set of slant columns. Further, important settings like the retrieval grid, profiles of O3, temperature and pressure as well as aerosol optical properties and a priori assumptions (for optimal estimation algorithms) have been prescribed to reduce possible sources of discrepancies. The profiling results were found to be in good qualitative agreement: most participants obtained the same features in the retrieved vertical trace gas and aerosol distributions; however, these are sometimes at different altitudes and of different magnitudes. Under clear-sky conditions, the root-mean-square differences (RMSDs) among the results of individual participants are in the range of 0.01–0.1 for AOTs, (1.5–15) ×1014molec.cm−2 for trace gas (NO2, HCHO) VCDs and (0.3–8)×1010molec.cm−3 for trace gas surface concentrations. These values compare to approximate average optical thicknesses of 0.3, trace gas vertical columns of 90×1014molec.cm−2 and trace gas surface concentrations of 11×1010molec.cm−3 observed over the campaign period. The discrepancies originate from differences in the applied techniques, the exact implementation of the algorithms and the user-defined settings that were not prescribed. For the comparison against supporting observations, the RMSDs increase to a range of 0.02–0.2 against AOTs from the Sun photometer, (11–55)×1014molec.cm−2 against trace gas VCDs from direct-sun DOAS observations and (0.8–9)×1010molec.cm−3 against surface concentrations from the long-path DOAS instrument. This increase in RMSDs is most likely caused by uncertainties in the supporting data, spatiotemporal mismatch among the observations and simplified assumptions particularly on aerosol optical properties made for the MAX-DOAS retrieval. As a side investigation, the comparison was repeated with the participants retrieving profiles from their own differential slant column densities (dSCDs) acquired during the campaign. In this case, the consistency among the participants degrades by about 30 % for AOTs, by 180 % (40 %) for HCHO (NO2) VCDs and by 90 % (20 %) for HCHO (NO2) surface concentrations. In former publications and also during this comparison study, it was found that MAX-DOAS vertically integrated aerosol extinction coefficient profiles systematically underestimate the AOT observed by the Sun photometer. For the first time, it is quantitatively shown that for optimal estimation algorithms this can be largely explained and compensated by considering biases arising from the reduced sensitivity of MAX-DOAS observations to higher altitudes and associated a priori assumptions.